Solvability of the Three-Dimensional Thermistor Problem
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 101-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

An existence theorem for one of the complicated versions of the well-known thermistor problem is proved.
@article{TRSPY_2008_261_a8,
     author = {V. V. Zhikov},
     title = {Solvability of the {Three-Dimensional} {Thermistor} {Problem}},
     journal = {Informatics and Automation},
     pages = {101--114},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a8/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Solvability of the Three-Dimensional Thermistor Problem
JO  - Informatics and Automation
PY  - 2008
SP  - 101
EP  - 114
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a8/
LA  - ru
ID  - TRSPY_2008_261_a8
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Solvability of the Three-Dimensional Thermistor Problem
%J Informatics and Automation
%D 2008
%P 101-114
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a8/
%G ru
%F TRSPY_2008_261_a8
V. V. Zhikov. Solvability of the Three-Dimensional Thermistor Problem. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 101-114. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a8/

[1] Howison S. D., Rodrigues J. F., Shillor M., “Stationary solutions to the thermistor problem”, J. Math. Anal. and Appl., 174:2 (1993), 573–588 | DOI | MR | Zbl

[2] Baranger J., Mikelic A., “Stationary solutions to a quasi-Newtonian flow with viscous heating”, Math. Models and Meth. Appl. Sci., 5:6 (1995), 725–738 | DOI | MR | Zbl

[3] Zhikov V. V., “On some variational problems”, Russ. J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl

[4] Zhikov V. V., “Otsenki tipa Meiersa dlya resheniya nelineinoi sistemy Stoksa”, Dif. uravneniya, 33:1 (1997), 107–114 | MR | Zbl

[5] Růžička M., Electrorheological fluids: Modeling and mathematical theory, Lect. Notes Math., 1748, Springer, Berlin, 2000 | MR

[6] Antontsev S. N., Rodrigues J. F., “On stationary thermo-rheological viscous flows”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19–36 | DOI | MR | Zbl

[7] Fan X., Zhang Q., “Existence of solutions for $p(x)$-Laplacian Dirichlet problem”, Nonlin. Anal. Theory Meth. and Appl., 52:8 (2003), 1843–1852 | DOI | MR | Zbl

[8] Alkhutov Yu. A., Kondratev V. A., “Razreshimost zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v vypukloi oblasti”, Dif. uravneniya, 28:5 (1992), 806–818 | MR

[9] Boccardo L., Gallouet T., “Nonlinear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87 (1989), 149–169 | DOI | MR | Zbl

[10] Zhikov V. V., “O plotnosti gladkikh funktsii v prostranstve Soboleva–Orlicha”, Zap. nauch. sem. POMI, 310, 2004, 67–81 | MR | Zbl

[11] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. mat., 50:4 (1986), 675–710 | MR | Zbl

[12] Zhikov V. V., “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Mat. sb., 183:8 (1992), 47–84 | MR | Zbl

[13] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[14] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[15] Reshetnyak Yu. G., “Obschie teoremy o polunepreryvnosti i o skhodimosti s funktsionalom”, Sib. mat. zhurn., 8:5 (1967), 1051–1069 | Zbl

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR