Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 97-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the coefficients of lower order terms of a second-order parabolic equation, we obtain sharp sufficient conditions under which the solution of the Cauchy problem stabilizes to zero uniformly in $x$ on each compact set $K$ in $\mathbb R^N$ for any exponentially growing initial function.
@article{TRSPY_2008_261_a7,
     author = {V. N. Denisov},
     title = {Stabilization of {Solution} to the {Cauchy} {Problem} for {a~Parabolic} {Equation} with {Lower} {Order} {Coefficients} and an {Exponentially} {Growing} {Initial} {Function}},
     journal = {Informatics and Automation},
     pages = {97--100},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a7/}
}
TY  - JOUR
AU  - V. N. Denisov
TI  - Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function
JO  - Informatics and Automation
PY  - 2008
SP  - 97
EP  - 100
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a7/
LA  - ru
ID  - TRSPY_2008_261_a7
ER  - 
%0 Journal Article
%A V. N. Denisov
%T Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function
%J Informatics and Automation
%D 2008
%P 97-100
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a7/
%G ru
%F TRSPY_2008_261_a7
V. N. Denisov. Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 97-100. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a7/

[1] Aronson D. G., “Non-negative solutions of linear parabolic equations”, Ann. Scuola Norm. Super. Pisa Sci. Fis. Mat. Ser. 3, 22:4 (1968), 607–694 | MR | Zbl

[2] Zhang Q. S., “Gaussian bounds for the fundamental solutions of $\nabla(A\nabla u)+B\nabla u-u_t=0$”, Manuscr. math., 93 (1997), 381–390 | DOI | MR | Zbl

[3] Kondratiev V., Liskevich V., Sobol Z., Us O., “Estimates of heat kernels for a class of second-order elliptic operators with applications to semi-linear inequalities in exterior domains”, J. London Math. Soc., 69:1 (2004), 107–127 | DOI | MR | Zbl

[4] Denisov V. N., “O povedenii reshenii parabolicheskikh uravnenii pri bolshikh znacheniyakh vremeni”, UMN, 60:4 (2005), 145–212 | MR | Zbl