Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2008_261_a6, author = {A. A. Davydov and M. A. Komarov}, title = {Local {Controllability} {Bifurcations} in {Families} of {Bidynamical} {Systems} on the {Plane}}, journal = {Informatics and Automation}, pages = {87--96}, publisher = {mathdoc}, volume = {261}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a6/} }
TY - JOUR AU - A. A. Davydov AU - M. A. Komarov TI - Local Controllability Bifurcations in Families of Bidynamical Systems on the Plane JO - Informatics and Automation PY - 2008 SP - 87 EP - 96 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a6/ LA - ru ID - TRSPY_2008_261_a6 ER -
A. A. Davydov; M. A. Komarov. Local Controllability Bifurcations in Families of Bidynamical Systems on the Plane. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 87-96. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a6/
[1] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971, 240 pp. | MR
[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, 2-e izd., ispr., MTsNMO, M., 2004, 672 pp.
[3] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977, 296 pp. | MR
[4] Davydov A. A., “Osobennosti polei predelnykh napravlenii dvumernykh upravlyaemykh sistem”, Mat. sb., 136:4 (1988), 478–499 | MR | Zbl
[5] Komarov M. A., “Lokalnaya upravlyaemost v tipichnykh dvuparametricheskikh semeistvakh bidinamicheskikh sistem na ploskosti”, Tr. VlGU, Vyp. 3, Vladimir, 2007, 66–75
[6] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Dif. uravneniya, 4:4 (1968), 606–617 | MR | Zbl
[7] Azevedo L., Transitividade local de sistemas polidinamicos, MS Thes., Dep. Mat. Apl. Fac. Cien. Univ. Porto, 2006
[8] Jakubczyk B., Respondek W., “Bifurcations of 1-parameter families of control-affine systems in the plane”, SIAM J. Control and Optim., 44:6 (2006), 2038–2062 | DOI | MR | Zbl
[9] Rupniewski M., “Local bifurcations of control-affine systems in the plane”, J. Dyn. and Control Syst., 13:1 (2007), 135–159 | DOI | MR | Zbl
[10] Sussmann H. J., “A general theorem on local controllability”, SIAM J. Control and Optim., 25:1 (1987), 158–194 | DOI | MR | Zbl