Local Controllability Bifurcations in Families of Bidynamical Systems on the Plane
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify generic local controllability bifurcations in two-parameter families of bidynamical systems on the plane at points with nonzero velocity indicatrix.
@article{TRSPY_2008_261_a6,
     author = {A. A. Davydov and M. A. Komarov},
     title = {Local {Controllability} {Bifurcations} in {Families} of {Bidynamical} {Systems} on the {Plane}},
     journal = {Informatics and Automation},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a6/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - M. A. Komarov
TI  - Local Controllability Bifurcations in Families of Bidynamical Systems on the Plane
JO  - Informatics and Automation
PY  - 2008
SP  - 87
EP  - 96
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a6/
LA  - ru
ID  - TRSPY_2008_261_a6
ER  - 
%0 Journal Article
%A A. A. Davydov
%A M. A. Komarov
%T Local Controllability Bifurcations in Families of Bidynamical Systems on the Plane
%J Informatics and Automation
%D 2008
%P 87-96
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a6/
%G ru
%F TRSPY_2008_261_a6
A. A. Davydov; M. A. Komarov. Local Controllability Bifurcations in Families of Bidynamical Systems on the Plane. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 87-96. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a6/

[1] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971, 240 pp. | MR

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, 2-e izd., ispr., MTsNMO, M., 2004, 672 pp.

[3] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977, 296 pp. | MR

[4] Davydov A. A., “Osobennosti polei predelnykh napravlenii dvumernykh upravlyaemykh sistem”, Mat. sb., 136:4 (1988), 478–499 | MR | Zbl

[5] Komarov M. A., “Lokalnaya upravlyaemost v tipichnykh dvuparametricheskikh semeistvakh bidinamicheskikh sistem na ploskosti”, Tr. VlGU, Vyp. 3, Vladimir, 2007, 66–75

[6] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Dif. uravneniya, 4:4 (1968), 606–617 | MR | Zbl

[7] Azevedo L., Transitividade local de sistemas polidinamicos, MS Thes., Dep. Mat. Apl. Fac. Cien. Univ. Porto, 2006

[8] Jakubczyk B., Respondek W., “Bifurcations of 1-parameter families of control-affine systems in the plane”, SIAM J. Control and Optim., 44:6 (2006), 2038–2062 | DOI | MR | Zbl

[9] Rupniewski M., “Local bifurcations of control-affine systems in the plane”, J. Dyn. and Control Syst., 13:1 (2007), 135–159 | DOI | MR | Zbl

[10] Sussmann H. J., “A general theorem on local controllability”, SIAM J. Control and Optim., 25:1 (1987), 158–194 | DOI | MR | Zbl