On Radial Solutions of the Swift--Hohenberg Equation
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 188-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study radial solutions to the generalized Swift–Hohenberg equation on the plane with an additional quadratic term. We find stationary localized radial solutions that decay at infinity and solutions that tend to constants as the radius increases unboundedly (“droplets”). We formulate existence theorems for droplets and sketch the proofs employing the properties of the limit system as $r\to\infty$. This system is a Hamiltonian system corresponding to a spatially one-dimensional stationary Swift–Hohenberg equation. We analyze the properties of this system and also discuss concentric-wave-type solutions. All the results are obtained by combining the methods of the theory of dynamical systems, in particular, the theory of homo- and heteroclinic orbits, and numerical simulation.
@article{TRSPY_2008_261_a13,
     author = {N. E. Kulagin and L. M. Lerman and T. G. Shmakova},
     title = {On {Radial} {Solutions} of the {Swift--Hohenberg} {Equation}},
     journal = {Informatics and Automation},
     pages = {188--209},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a13/}
}
TY  - JOUR
AU  - N. E. Kulagin
AU  - L. M. Lerman
AU  - T. G. Shmakova
TI  - On Radial Solutions of the Swift--Hohenberg Equation
JO  - Informatics and Automation
PY  - 2008
SP  - 188
EP  - 209
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a13/
LA  - ru
ID  - TRSPY_2008_261_a13
ER  - 
%0 Journal Article
%A N. E. Kulagin
%A L. M. Lerman
%A T. G. Shmakova
%T On Radial Solutions of the Swift--Hohenberg Equation
%J Informatics and Automation
%D 2008
%P 188-209
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a13/
%G ru
%F TRSPY_2008_261_a13
N. E. Kulagin; L. M. Lerman; T. G. Shmakova. On Radial Solutions of the Swift--Hohenberg Equation. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 188-209. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a13/

[1] Aranson I. S., Gorshkov K. A., Lomov A. S., Rabinovich M. I., “Stable particle-like solutions of multidimensional nonlinear fields”, Physica D, 43 (1990), 435–453 | DOI | MR | Zbl

[2] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR

[3] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 3, VINITI, M., 1985 | MR

[4] H. Segur, S. Tanveer, H. Levine (eds.), Asymptotics beyond all orders, Plenum Press, New York, 1991 | MR | Zbl

[5] Belyakov L. A., Glebsky L. Yu., Lerman L. M., “Abundance of stable stationary localized solutions to the generalized 1D Swift–Hohenberg equation”, Comput. Math. Appl., 34:2–4 (1997), 253–266 | DOI | MR | Zbl

[6] Bryuno A. D., “Normalnaya forma sistemy Gamiltona”, UMN, 43:1 (1988), 23–56 | MR | Zbl

[7] Collet P., Eckmann J.-P., Instabilities and fronts in extended systems, Princeton Univ. Press, Princeton, NJ, 1990 | MR | Zbl

[8] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[9] Eckmann J.-P., Wayne C. E., “Propagating fronts and the center manifold theorem”, Commun. Math. Phys., 136 (1991), 285–307 | DOI | MR | Zbl

[10] Eleonskii V. M., Kirova N. N., Kulagin N. E., “O sluchainom vyrozhdenii samolokalizovannykh reshenii uravnenii Landau–Lifshitsa”, ZhETF, 74:6 (1978), 2210–2219

[11] Gelfreikh V. G., Lazutkin V. F., “Rasscheplenie separatris: teoriya vozmuschenii, eksponentsialnaya malost”, UMN, 56:3 (2001), 79–142 | MR | Zbl

[12] Glebsky L. Yu., Lerman L. M., “On small stationary localized solutions for the generalized 1-D Swift–Hohenberg equation”, Chaos, 5:2 (1995), 424–431 | DOI | MR | Zbl

[13] Glebsky L. Yu., Lerman L. M., “Instability of small stationary localized solutions to a class of reversible $1+1$ PDEs”, Nonlinearity, 10:2 (1997), 389–407 | DOI | MR | Zbl

[14] Gomila D., Colet P., San Miguel M., Scroggie A. J., Oppo G.-L., “Stable droplets and dark-ring cavity solitons in nonlinear optical devices”, IEEE J. Quantum Electron., 39:2 (2003), 238–244 | DOI

[15] Gorshkov K. A., Ostrovsky L. A., “Interaction of solitons in nonintegrable systems: Direct perturbation method and applications”, Physica D, 3 (1981), 428–438 | DOI

[16] Grotta Ragazzo C., “Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers”, Commun. Pure and Appl. Math., 50 (1997), 105–147 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[18] Hilali M'F., Métens S., Borckmans P., Dewel G., “Pattern selection in the generalized Swift–Hohenberg model”, Phys. Rev. E, 51:3 (1995), 2046–2052 | DOI

[19] Hirsch M.W., Pugh C. C., Shub M., Invariant manifolds, Lect. Notes Math., 583, Springer, Berlin, 1977 | MR | Zbl

[20] Iooss G., “Travelling waves in the Fermi–Pasta–Ulam lattice”, Nonlinearity, 13:3 (2000), 849–866 | DOI | MR | Zbl

[21] Iooss G., Pérouème M. C., “Perturbed homoclinic solutions in reversible $1:1$ resonance vector fields”, J. Diff. Equat., 102:1 (1993), 62–88 | DOI | MR | Zbl

[22] Jones C., Küpper N., “On the infinitely many solutions of a semilinear elliptic equation”, SIAM J. Math. Anal., 17:4 (1986), 803–835 | DOI | MR | Zbl

[23] Kalies W. D., Kwapisz J., VanderVorst R. C. A. M., “Homotopy classes for stable connections between Hamiltonian saddle–focus equilibria”, Commun. Math. Phys., 193 (1998), 337–371 | DOI | MR | Zbl

[24] Kirchgässner K., “Wave-solutions of reversible systems and applications”, J. Diff. Equat., 45:1 (1982), 113–127 | DOI | MR | Zbl

[25] Koltsova O. Yu., Lerman L. M., “Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center”, Intern. J. Bifurcation and Chaos Appl. Sci. and Eng., 5:2 (1995), 397–408 | DOI | MR | Zbl

[26] Kovalev A. M., Chudnenko A. N., “Ob ustoichivosti polozheniya ravnovesiya dvumernoi gamiltonovoi sistemy v sluchae ravnykh chastot”, DAN USSR A, 1977, no. 11, 1010–1013 | MR

[27] Lega J., Moloney J. V., Newell A. C., “Swift–Hohenberg equation for lasers”, Phys. Rev. Lett., 73 (1994), 2978–2981 | DOI

[28] Lerman L. M., “Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle–foci”, Regul. and Chaotic Dyn., 2:3–4 (1997), 139–155 | MR | Zbl

[29] van der Meer J.-C., Hamiltonian Hopf bifurcation, Lect. Notes Math., 1160, Springer, Berlin, 1985 | MR | Zbl

[30] Mielke A., “A reduction principle for nonautonomous systems in infinite-dimensional spaces”, J. Diff. Equat., 65:1 (1986), 68–88 | DOI | MR | Zbl

[31] Mielke A., Holmes P., O'Reilly O., “Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle–center”, J. Dyn. and Diff. Equat., 4 (1992), 95–126 | DOI | MR | Zbl

[32] Peletier L. A., Rodriguez J. A., “Homoclinic orbits to a saddle–center in a fourth-order differential equation”, J. Diff. Equat., 203:2 (2004), 185–215 | DOI | MR | Zbl

[33] Samovol V. S., “Normalnaya forma avtonomnoi sistemy s odnim nulevym kornem”, Mat. zametki, 75:5 (2004), 711–720 | MR | Zbl

[34] Scheel A., Radially symmetric patterns of reaction–diffusion systems, Mem. AMS, 165{, No 786}, Amer. Math. Soc., Providence, RI, 2003 | MR

[35] Sevryuk M. B., Reversible systems, Lect. Notes Math., 1211, Springer, Berlin, 1986 | MR | Zbl

[36] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR

[37] Shilnikov L. P., “Ob odnom novom tipe bifurkatsii mnogomernykh dinamicheskikh sistem”, DAN CSSR, 189:1 (1969), 59–62 | MR

[38] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, In-t kompyut. issled., M., Izhevsk, 2004

[39] Smets D., van den Berg J. B., “Homoclinic solutions for Swift–Hohenberg and suspended bridge type equations”, J. Diff. Equat., 184 (2002), 78–96 | DOI | MR | Zbl

[40] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri rezonanse pervogo poryadka”, PMM, 41:1 (1977), 24–33 | MR

[41] Swift J., Hohenberg P. C., “Hydrodynamic fluctuations at the convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI

[42] Tlidi M., Georgiou M., Mandel P., “Transverse patterns in nascent optical bistability”, Phys. Rev. A, 48 (1993), 4605–4609 | DOI

[43] Treschev D. V., “Poterya ustoichivosti v gamiltonovykh sistemakh, zavisyaschikh ot parametrov”, PMM, 56:4 (1992), 587–596 | MR | Zbl

[44] Zelik S., Mielke A., Multi-pulse evolution and space–time chaos in dissipative systems, Preprint WIAS No 1093, Weierstrass Inst. Appl. Anal. and Stoch., Berlin, 2006, 108 pp.