Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2008_261_a13, author = {N. E. Kulagin and L. M. Lerman and T. G. Shmakova}, title = {On {Radial} {Solutions} of the {Swift--Hohenberg} {Equation}}, journal = {Informatics and Automation}, pages = {188--209}, publisher = {mathdoc}, volume = {261}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a13/} }
TY - JOUR AU - N. E. Kulagin AU - L. M. Lerman AU - T. G. Shmakova TI - On Radial Solutions of the Swift--Hohenberg Equation JO - Informatics and Automation PY - 2008 SP - 188 EP - 209 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a13/ LA - ru ID - TRSPY_2008_261_a13 ER -
N. E. Kulagin; L. M. Lerman; T. G. Shmakova. On Radial Solutions of the Swift--Hohenberg Equation. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 188-209. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a13/
[1] Aranson I. S., Gorshkov K. A., Lomov A. S., Rabinovich M. I., “Stable particle-like solutions of multidimensional nonlinear fields”, Physica D, 43 (1990), 435–453 | DOI | MR | Zbl
[2] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR
[3] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 3, VINITI, M., 1985 | MR
[4] H. Segur, S. Tanveer, H. Levine (eds.), Asymptotics beyond all orders, Plenum Press, New York, 1991 | MR | Zbl
[5] Belyakov L. A., Glebsky L. Yu., Lerman L. M., “Abundance of stable stationary localized solutions to the generalized 1D Swift–Hohenberg equation”, Comput. Math. Appl., 34:2–4 (1997), 253–266 | DOI | MR | Zbl
[6] Bryuno A. D., “Normalnaya forma sistemy Gamiltona”, UMN, 43:1 (1988), 23–56 | MR | Zbl
[7] Collet P., Eckmann J.-P., Instabilities and fronts in extended systems, Princeton Univ. Press, Princeton, NJ, 1990 | MR | Zbl
[8] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[9] Eckmann J.-P., Wayne C. E., “Propagating fronts and the center manifold theorem”, Commun. Math. Phys., 136 (1991), 285–307 | DOI | MR | Zbl
[10] Eleonskii V. M., Kirova N. N., Kulagin N. E., “O sluchainom vyrozhdenii samolokalizovannykh reshenii uravnenii Landau–Lifshitsa”, ZhETF, 74:6 (1978), 2210–2219
[11] Gelfreikh V. G., Lazutkin V. F., “Rasscheplenie separatris: teoriya vozmuschenii, eksponentsialnaya malost”, UMN, 56:3 (2001), 79–142 | MR | Zbl
[12] Glebsky L. Yu., Lerman L. M., “On small stationary localized solutions for the generalized 1-D Swift–Hohenberg equation”, Chaos, 5:2 (1995), 424–431 | DOI | MR | Zbl
[13] Glebsky L. Yu., Lerman L. M., “Instability of small stationary localized solutions to a class of reversible $1+1$ PDEs”, Nonlinearity, 10:2 (1997), 389–407 | DOI | MR | Zbl
[14] Gomila D., Colet P., San Miguel M., Scroggie A. J., Oppo G.-L., “Stable droplets and dark-ring cavity solitons in nonlinear optical devices”, IEEE J. Quantum Electron., 39:2 (2003), 238–244 | DOI
[15] Gorshkov K. A., Ostrovsky L. A., “Interaction of solitons in nonintegrable systems: Direct perturbation method and applications”, Physica D, 3 (1981), 428–438 | DOI
[16] Grotta Ragazzo C., “Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers”, Commun. Pure and Appl. Math., 50 (1997), 105–147 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[18] Hilali M'F., Métens S., Borckmans P., Dewel G., “Pattern selection in the generalized Swift–Hohenberg model”, Phys. Rev. E, 51:3 (1995), 2046–2052 | DOI
[19] Hirsch M.W., Pugh C. C., Shub M., Invariant manifolds, Lect. Notes Math., 583, Springer, Berlin, 1977 | MR | Zbl
[20] Iooss G., “Travelling waves in the Fermi–Pasta–Ulam lattice”, Nonlinearity, 13:3 (2000), 849–866 | DOI | MR | Zbl
[21] Iooss G., Pérouème M. C., “Perturbed homoclinic solutions in reversible $1:1$ resonance vector fields”, J. Diff. Equat., 102:1 (1993), 62–88 | DOI | MR | Zbl
[22] Jones C., Küpper N., “On the infinitely many solutions of a semilinear elliptic equation”, SIAM J. Math. Anal., 17:4 (1986), 803–835 | DOI | MR | Zbl
[23] Kalies W. D., Kwapisz J., VanderVorst R. C. A. M., “Homotopy classes for stable connections between Hamiltonian saddle–focus equilibria”, Commun. Math. Phys., 193 (1998), 337–371 | DOI | MR | Zbl
[24] Kirchgässner K., “Wave-solutions of reversible systems and applications”, J. Diff. Equat., 45:1 (1982), 113–127 | DOI | MR | Zbl
[25] Koltsova O. Yu., Lerman L. M., “Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center”, Intern. J. Bifurcation and Chaos Appl. Sci. and Eng., 5:2 (1995), 397–408 | DOI | MR | Zbl
[26] Kovalev A. M., Chudnenko A. N., “Ob ustoichivosti polozheniya ravnovesiya dvumernoi gamiltonovoi sistemy v sluchae ravnykh chastot”, DAN USSR A, 1977, no. 11, 1010–1013 | MR
[27] Lega J., Moloney J. V., Newell A. C., “Swift–Hohenberg equation for lasers”, Phys. Rev. Lett., 73 (1994), 2978–2981 | DOI
[28] Lerman L. M., “Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle–foci”, Regul. and Chaotic Dyn., 2:3–4 (1997), 139–155 | MR | Zbl
[29] van der Meer J.-C., Hamiltonian Hopf bifurcation, Lect. Notes Math., 1160, Springer, Berlin, 1985 | MR | Zbl
[30] Mielke A., “A reduction principle for nonautonomous systems in infinite-dimensional spaces”, J. Diff. Equat., 65:1 (1986), 68–88 | DOI | MR | Zbl
[31] Mielke A., Holmes P., O'Reilly O., “Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle–center”, J. Dyn. and Diff. Equat., 4 (1992), 95–126 | DOI | MR | Zbl
[32] Peletier L. A., Rodriguez J. A., “Homoclinic orbits to a saddle–center in a fourth-order differential equation”, J. Diff. Equat., 203:2 (2004), 185–215 | DOI | MR | Zbl
[33] Samovol V. S., “Normalnaya forma avtonomnoi sistemy s odnim nulevym kornem”, Mat. zametki, 75:5 (2004), 711–720 | MR | Zbl
[34] Scheel A., Radially symmetric patterns of reaction–diffusion systems, Mem. AMS, 165{, No 786}, Amer. Math. Soc., Providence, RI, 2003 | MR
[35] Sevryuk M. B., Reversible systems, Lect. Notes Math., 1211, Springer, Berlin, 1986 | MR | Zbl
[36] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR
[37] Shilnikov L. P., “Ob odnom novom tipe bifurkatsii mnogomernykh dinamicheskikh sistem”, DAN CSSR, 189:1 (1969), 59–62 | MR
[38] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, In-t kompyut. issled., M., Izhevsk, 2004
[39] Smets D., van den Berg J. B., “Homoclinic solutions for Swift–Hohenberg and suspended bridge type equations”, J. Diff. Equat., 184 (2002), 78–96 | DOI | MR | Zbl
[40] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri rezonanse pervogo poryadka”, PMM, 41:1 (1977), 24–33 | MR
[41] Swift J., Hohenberg P. C., “Hydrodynamic fluctuations at the convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI
[42] Tlidi M., Georgiou M., Mandel P., “Transverse patterns in nascent optical bistability”, Phys. Rev. A, 48 (1993), 4605–4609 | DOI
[43] Treschev D. V., “Poterya ustoichivosti v gamiltonovykh sistemakh, zavisyaschikh ot parametrov”, PMM, 56:4 (1992), 587–596 | MR | Zbl
[44] Zelik S., Mielke A., Multi-pulse evolution and space–time chaos in dissipative systems, Preprint WIAS No 1093, Weierstrass Inst. Appl. Anal. and Stoch., Berlin, 2006, 108 pp.