Periodic Magnetic Schr\"odinger Operators: Spectral Gaps and Tunneling Effect
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 176-187

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic Schrödinger operator on a noncompact Riemannian manifold $M$ such that $H^1(M,\mathbb R)=0$ endowed with a properly discontinuous cocompact isometric action of a discrete group is considered. Under some additional conditions on the magnetic field, the existence of an arbitrary large number of gaps in the spectrum of such an operator in the semiclassical limit is established. The proofs are based on the study of the tunneling effect in the corresponding quantum system.
@article{TRSPY_2008_261_a12,
     author = {Yu. A. Kordyukov and B. Helffer},
     title = {Periodic {Magnetic} {Schr\"odinger} {Operators:} {Spectral} {Gaps} and {Tunneling} {Effect}},
     journal = {Informatics and Automation},
     pages = {176--187},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a12/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
AU  - B. Helffer
TI  - Periodic Magnetic Schr\"odinger Operators: Spectral Gaps and Tunneling Effect
JO  - Informatics and Automation
PY  - 2008
SP  - 176
EP  - 187
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a12/
LA  - ru
ID  - TRSPY_2008_261_a12
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%A B. Helffer
%T Periodic Magnetic Schr\"odinger Operators: Spectral Gaps and Tunneling Effect
%J Informatics and Automation
%D 2008
%P 176-187
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a12/
%G ru
%F TRSPY_2008_261_a12
Yu. A. Kordyukov; B. Helffer. Periodic Magnetic Schr\"odinger Operators: Spectral Gaps and Tunneling Effect. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 176-187. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a12/