Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2008_261_a12, author = {Yu. A. Kordyukov and B. Helffer}, title = {Periodic {Magnetic} {Schr\"odinger} {Operators:} {Spectral} {Gaps} and {Tunneling} {Effect}}, journal = {Informatics and Automation}, pages = {176--187}, publisher = {mathdoc}, volume = {261}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a12/} }
TY - JOUR AU - Yu. A. Kordyukov AU - B. Helffer TI - Periodic Magnetic Schr\"odinger Operators: Spectral Gaps and Tunneling Effect JO - Informatics and Automation PY - 2008 SP - 176 EP - 187 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a12/ LA - ru ID - TRSPY_2008_261_a12 ER -
Yu. A. Kordyukov; B. Helffer. Periodic Magnetic Schr\"odinger Operators: Spectral Gaps and Tunneling Effect. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 176-187. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a12/
[1] Agmon S., Lectures on exponential decay of solutions of second-order elliptic equations, Math. Notes, 29, Princeton Univ. Press, Princeton, NJ, 1982 | MR | Zbl
[2] Brüning J., Dobrokhotov S. Yu., Pankrashkin K. V., “The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field. I, II”, Russ. J. Math. Phys., 9:1 (2002), 14–49 ; 4, 400–41; arXiv:math-ph/0411012 | Zbl
[3] Carlsson U., “An infinite number of wells in the semi-classical limit”, Asymp. Anal., 3:3 (1990), 189–214 | MR | Zbl
[4] Dimassi M., Sjöstrand J., Spectral asymptotics in the semi-classical limit, LMS Lect. Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[5] Frank R. L., “On the tunneling effect for magnetic Schrödinger operators in antidot lattices”, Asymp. Anal., 48:1–2 (2006), 91–120 | MR | Zbl
[6] Helffer B., “Introduction to semi-classical methods for the Schrödinger operator with magnetic fields”, Aspects théoriques et appliqués de quelques EDP issues de la géométrie ou de la physique, Proc. CIMPA School (Damas, Syrie, 2004), Séminaires et Congrès, Soc. math. France, Paris (to appear)
[7] Helffer B., Kordyukov Yu. A., “Semiclassical asymptotics and gaps in the spectra of periodic Schrödinger operators with magnetic wells”, Trans. Amer. Math. Soc., 360 (2008), 1681–1694 | DOI | MR | Zbl
[8] Helffer B., Mohamed A., “Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique”, Ann. Inst. Fourier, 38 (1988), 95–112 | MR | Zbl
[9] Helffer B., Mohamed A., “Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells”, J. Funct. Anal., 138 (1996), 40–81 | DOI | MR | Zbl
[10] Helffer B., Morame A., “Magnetic bottles in connection with superconductivity”, J. Funct. Anal., 185 (2001), 604–680 | DOI | MR | Zbl
[11] Helffer B., Nourrigat J., Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Birkhäuser, Boston, 1985 | MR | Zbl
[12] Helffer B., Sjöstrand J., “Multiple wells in the semi-classical limit. I”, Commun. Part. Diff. Equat., 9 (1984), 337–408 | DOI | MR | Zbl
[13] Helffer B., Sjöstrand J., “Puits multiples en limite semi-classique. II: Interaction moléculaire. Symétries. Perturbation”, Ann. Inst. H. Poincaré. Phys. Théor., 42:2 (1985), 127–212 | MR | Zbl
[14] Helffer B., Sjöstrand J., “Effet tunnel pour l'équation de Schrödinger avec champ magnétique”, Ann. Scuola Norm. Super. Pisa Cl. Sci. Ser. 4, 14 (1987), 625–657 | MR | Zbl
[15] Helffer B., Sjöstrand J., Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique), Mém. Soc. math. France (N.S.), 34, Soc. math. France, Paris, 1988 | MR | Zbl
[16] Helffer B., Sjöstrand J., “Équation de Schrödinger avec champ magnétique et équation de Harper”, Schrödinger operators (Sønderborg, 1988), Lect. Notes Phys., 345, Springer, Berlin, 1989, 118–197 | MR
[17] Hempel R., Herbst I., “Strong magnetic fields, Dirichlet boundaries, and spectral gaps”, Commun. Math. Phys., 169 (1995), 237–259 | DOI | MR | Zbl
[18] Hempel R., Post O., “Spectral gaps for periodic elliptic operators with high contrast: an overview”, Progress in analysis, Proc. 3rd ISAAC Congr. (Berlin, 2001), V. 2, World Sci., River Edge, NJ, 2003, 577–587 | MR | Zbl
[19] Herbst I., Nakamura S., “Schrödinger operators with strong magnetic fields: quasi-periodicity of spectral orbits and topology”, Differential operators and spectral theory, AMS Transl. Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999, 105–123 | MR | Zbl
[20] Kordyukov Yu., Mathai V., Shubin M., “Equivalence of spectral projections in semiclassical limit and a vanishing theorem for higher traces in $K$-theory”, J. reine und angew. Math., 581 (2005), 193–236 | MR | Zbl
[21] Kordyukov Yu. A., “Spectral gaps for periodic Schrödinger operators with strong magnetic fields”, Commun. Math. Phys., 253 (2005), 371–384 | DOI | MR | Zbl
[22] Kordyukov Yu. A., “Semiclassical asymptotics and spectral gaps for periodic magnetic Schrödinger operators on covering manifolds”, $C^*$-algebras and elliptic theory, Trends in Mathematics, Birkhäuser, Basel, 2006, 129–150 | MR | Zbl
[23] Mathai V., Shubin M., “Semiclassical asymptotics and gaps in the spectra of magnetic Schrödinger operators”, Geom. Dedicata, 91 (2002), 155–173 | DOI | MR | Zbl
[24] Montgomery R., “Hearing the zero locus of a magnetic field”, Commun. Math. Phys., 168 (1995), 651–675 | DOI | MR | Zbl
[25] Nakamura S., “Band spectrum for Schrödinger operators with strong periodic magnetic fields”, Partial differential operators and mathematical physics (Holzhau, 1994), Oper. Theory: Adv. and Appl., 78, Birkhäuser, Basel, 1995, 261–270 | MR | Zbl
[26] Pan X.-B., Kwek K.-H., “Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains”, Trans. Amer. Math. Soc., 354 (2002), 4201–4227 | DOI | MR | Zbl