Liouville Theorems for Some Nonlinear Inequalities
Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 97-118
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove various Liouville theorems for integral and differential inequalities on the whole $\mathbb R^N$. The main tools we use throughout this paper are representation formulae for linear inequalities, the nonlinear capacity method and the weak form of Harnack's inequality.
@article{TRSPY_2008_260_a6,
author = {G. Caristi and L. D'Ambrosio and E. Mitidieri},
title = {Liouville {Theorems} for {Some} {Nonlinear} {Inequalities}},
journal = {Informatics and Automation},
pages = {97--118},
publisher = {mathdoc},
volume = {260},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a6/}
}
G. Caristi; L. D'Ambrosio; E. Mitidieri. Liouville Theorems for Some Nonlinear Inequalities. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 97-118. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a6/