Spectral Stability of the Robin Laplacian
Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 75-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Robin Laplacian in two bounded regions $\Omega_1$ and $\Omega_2$ of $\mathbb R^N$ with Lipschitz boundaries and such that $\Omega_2\subset\Omega_1$, and we obtain two-sided estimates for the eigenvalues $\lambda_{n,2}$ of the Robin Laplacian in $\Omega_2$ via the eigenvalues $\lambda_{n,1}$ of the Robin Laplacian in $\Omega_1$. Our estimates depend on the measure of the set difference $\Omega_1\!\setminus\Omega_2$ and on suitably defined characteristics of vicinity of the boundaries $\partial\Omega_1$ and $\partial\Omega_2$, and of the functions defined on $\partial\Omega_1$ and on $\partial\Omega_2$ that enter the Robin boundary conditions.
@article{TRSPY_2008_260_a5,
     author = {V. I. Burenkov and M. Lanza de Cristoforis},
     title = {Spectral {Stability} of the {Robin} {Laplacian}},
     journal = {Informatics and Automation},
     pages = {75--96},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a5/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - M. Lanza de Cristoforis
TI  - Spectral Stability of the Robin Laplacian
JO  - Informatics and Automation
PY  - 2008
SP  - 75
EP  - 96
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a5/
LA  - en
ID  - TRSPY_2008_260_a5
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A M. Lanza de Cristoforis
%T Spectral Stability of the Robin Laplacian
%J Informatics and Automation
%D 2008
%P 75-96
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a5/
%G en
%F TRSPY_2008_260_a5
V. I. Burenkov; M. Lanza de Cristoforis. Spectral Stability of the Robin Laplacian. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 75-96. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a5/

[1] Burenkov V. I., Sobolev spaces on domains, B. G. Teubner, Stuttgart, 1998 | MR | Zbl

[2] Burenkov V. I., Davies E. B., “Spectral stability of the Neumann Laplacian”, J. Diff. Equat., 186:2 (2002), 485–508 | DOI | MR | Zbl

[3] Burenkov V. I., Lamberti P. D., “Spektralnaya ustoichivost neotritsatelnykh samosopryazhennykh operatorov”, DAN, 403:2 (2005), 159–164 | MR | Zbl

[4] Burenkov V. I., Lamberti P. D., “Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators”, J. Diff. Equat., 233:2 (2007), 345–379 | DOI | MR | Zbl

[5] Burenkov V. I., Lamberti P. D., Lantsa de Kristoforis M., “Spektralnaya ustoichivost neotritsatelnykh samosopryazhennykh operatorov”, Sovr. matematika. Fund. napr., 15 (2006), 76–111

[6] Davies E. B., Spectral theory and differential operators, Cambridge Stud. Adv. Math., 42, Cambridge Univ. Press, Cambridge, 1995 | MR

[7] Davies E. B., Heat kernels and spectral theory, Cambridge Tracts Math., 92, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[8] Deimling K., Nonlinear functional analysis, Springer–Verlag, Berlin etc., 1985 | MR | Zbl

[9] Lamberti P. D., Lanza de Cristoforis M., “A global Lipschitz continuity result for a domain-dependent Neumann eigenvalue problem for the Laplace operator”, J. Diff. Equat., 216:1 (2005), 109–133 | DOI | MR | Zbl

[10] Lieb E. H., Loss M., Analysis, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[11] Marcus M., Mizel V. J., “Absolute continuity on tracks and mappings of Sobolev spaces”, Arch. Ration. Mech. and Anal., 45 (1972), 294–320 | MR | Zbl

[12] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris, 1967 | MR | Zbl