Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2008_260_a10, author = {P. L. Gurevich}, title = {On the {Existence} of {a~Feller} {Semigroup} with {Atomic} {Measure} in {a~Nonlocal} {Boundary} {Condition}}, journal = {Informatics and Automation}, pages = {164--179}, publisher = {mathdoc}, volume = {260}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a10/} }
TY - JOUR AU - P. L. Gurevich TI - On the Existence of a~Feller Semigroup with Atomic Measure in a~Nonlocal Boundary Condition JO - Informatics and Automation PY - 2008 SP - 164 EP - 179 VL - 260 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a10/ LA - ru ID - TRSPY_2008_260_a10 ER -
P. L. Gurevich. On the Existence of a~Feller Semigroup with Atomic Measure in a~Nonlocal Boundary Condition. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 164-179. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a10/
[1] Venttsel A. D., “O granichnykh usloviyakh dlya mnogomernykh diffuzionnykh protsessov”, Teor. veroyatn. i ee prim., 4:2 (1959), 172–185 | Zbl
[2] Galakhov E. I., Skubachevskii A. L., “O szhimayuschikh neotritsatelnykh polugruppakh s nelokalnymi usloviyami”, Mat. sb., 189:1 (1998), 45–78 | MR | Zbl
[3] Gurevich P. L., “Asimptotika reshenii nelokalnykh ellipticheskikh zadach v ploskikh uglakh”, Tr. sem. im. I. G. Petrovskogo, 23 (2003), 93–126 | MR | Zbl
[4] Gurevich P. L., Skubachevskii A. L., “O fredgolmovoi i odnoznachnoi razreshimosti nelokalnykh ellipticheskikh zadach v mnogomernykh oblastyakh”, Tr. Mosk. mat. o-va, 68 (2007), 288–373 | MR | Zbl
[5] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[6] Skubachevskii A. L., “O nekotorykh zadachakh dlya mnogomernykh diffuzionnykh protsessov”, DAN SSSR, 307 (1989), 287–291
[7] Skubachevskii A. L., “Modelnye nelokalnye zadachi dlya ellipticheskikh uravnenii v dvugrannykh uglakh”, Dif. uravneniya, 26:1 (1990), 120–131 | MR
[8] Bony J. M., Courrege P., Priouret P., “Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum”, Ann. Inst. Fourier, 18:2 (1968), 369–521 | MR | Zbl
[9] Feller W., “The parabolic differential equations and the associated semi-groups of transformations”, Ann. Math. Ser. 2, 55 (1952), 468–519 | DOI | MR | Zbl
[10] Feller W., “Diffusion processes in one dimension”, Trans. Amer. Math. Soc., 77 (1954), 1–31 | DOI | MR | Zbl
[11] Galakhov E. I., Skubachevskii A. L., “On Feller semigroups generated by elliptic operators with integro-differential boundary conditions”, J. Diff. Equat., 176:2 (2001), 315–355 | DOI | MR | Zbl
[12] Gurevich P. L., “Nonlocal problems for elliptic equations in dihedral angles and the Green formula”, Mitt. Math. Sem. Giessen, 247, Math. Inst. Univ. Giessen, Giessen (Germany), 2001, 74 pp. | MR | Zbl
[13] Gurevich P. L., “Solvability of nonlocal elliptic problems in Sobolev spaces. II”, Russ. J. Math. Phys., 11:1 (2004), 1–44 | MR | Zbl
[14] Ishikawa Y., “A remark on the existence of a diffusion process with non-local boundary conditions”, J. Math. Soc. Japan., 42:1 (1990), 171–184 | DOI | MR | Zbl
[15] Sato K., Ueno T., “Multi-dimensional diffusion and the Markov process on the boundary”, J. Math. Kyoto Univ., 4 (1965), 529–605 | MR | Zbl
[16] Skubachevskii A. L., “Nonlocal elliptic problems and multidimensional diffusion processes”, Russ. J. Math. Phys., 3:3 (1995), 327–360 | MR
[17] Taira K., Diffusion processes and partial differential equations, Acad. Press, New York, London, 1988 | MR | Zbl
[18] Taira K., Semigroups, boundary value problems and Markov processes, Springer–Verlag, Berlin, 2004 | MR
[19] Watanabe S., “Construction of diffusion processes with Wentzell's boundary conditions by means of Poisson point processes of Brownian excursions”, Probability theory, Banach Center Publ., 5, Pol. Sci. Publ., Warsaw, 1979, 255–271 | MR