Singularities and Noncommutative Frobenius Manifolds
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 143-155

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the quaternionic miniversal deformations of an $A_n$ singularity have the structure of a noncommutative Frobenius manifold in the sense of the extended cohomological field theory.
@article{TRSPY_2007_259_a9,
     author = {S. M. Natanzon},
     title = {Singularities and {Noncommutative} {Frobenius} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {143--155},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a9/}
}
TY  - JOUR
AU  - S. M. Natanzon
TI  - Singularities and Noncommutative Frobenius Manifolds
JO  - Informatics and Automation
PY  - 2007
SP  - 143
EP  - 155
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a9/
LA  - ru
ID  - TRSPY_2007_259_a9
ER  - 
%0 Journal Article
%A S. M. Natanzon
%T Singularities and Noncommutative Frobenius Manifolds
%J Informatics and Automation
%D 2007
%P 143-155
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a9/
%G ru
%F TRSPY_2007_259_a9
S. M. Natanzon. Singularities and Noncommutative Frobenius Manifolds. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 143-155. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a9/