Singularities and Noncommutative Frobenius Manifolds
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 143-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the quaternionic miniversal deformations of an $A_n$ singularity have the structure of a noncommutative Frobenius manifold in the sense of the extended cohomological field theory.
@article{TRSPY_2007_259_a9,
     author = {S. M. Natanzon},
     title = {Singularities and {Noncommutative} {Frobenius} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {143--155},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a9/}
}
TY  - JOUR
AU  - S. M. Natanzon
TI  - Singularities and Noncommutative Frobenius Manifolds
JO  - Informatics and Automation
PY  - 2007
SP  - 143
EP  - 155
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a9/
LA  - ru
ID  - TRSPY_2007_259_a9
ER  - 
%0 Journal Article
%A S. M. Natanzon
%T Singularities and Noncommutative Frobenius Manifolds
%J Informatics and Automation
%D 2007
%P 143-155
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a9/
%G ru
%F TRSPY_2007_259_a9
S. M. Natanzon. Singularities and Noncommutative Frobenius Manifolds. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 143-155. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a9/

[1] Alexeevski A., Natanzon S., Non-commutative extensions of two-dimensional topological field theories and Hurwitz numbers for real algebraic curves, E-print, 2002; arXiv: /math.GT/0202164

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. I: Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 ; II: Монодромия и асимптотики интегралов, Наука, М., 1984 | MR

[3] Atiyah M., “Topological quantum field theories”, Publ. Math. IHES, 68 (1988), 175–186 | MR | Zbl

[4] Dijkgraaf R., Geometrical approach to two-dimensional conformal field theory, Ph.D. Thes., Utrecht, 1989 | Zbl

[5] Dijkgraaf R., Verlinde E., Verlinde H., “Topological strings in $d1$”, Nucl. Phys. B, 352 (1991), 59–86 | DOI | MR

[6] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 | MR | Zbl

[7] Faith C., Algebra: rings, modules and categories.I, Heidelberg, Berlin; Springer, New York, 1973 | MR | Zbl

[8] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Commun. Math. Phys., 164 (1994), 525–562 | DOI | MR | Zbl

[9] Lazaroiu C. I., “On the structure of open–closed topological field theory in two dimensions”, Nucl. Phys. B, 603 (2001), 497–530 | DOI | MR | Zbl

[10] Manin Yu. I., Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Faktorial, M., 2002

[11] Moor G., D-branes, RR-fields and K-theory. II, http://online.itp.ucsb.edu/online/mp01/moore2/

[12] Natanzon S. M., Structures de Dubrovin, Preprint 1997/26, Inst. Rech. Math. Avancée, Strasbourg, 1997

[13] Natanzon S. M., “Formulas for $A_n$- and $B_n$-solutions of WDVV equations”, J. Geom. and Phys., 39 (2001), 323–336 | DOI | MR | Zbl

[14] Natanzon S. M., “Extended cohomological field theories and noncommutative Frobenius manifolds”, J. Geom. and Phys., 51 (2003), 387–403 | DOI | MR

[15] Saito K., “On a linear structure of a quotient variety by a finite reflection group”, Publ. RIMS, 29:4 (1993), 535–579 | DOI | MR | Zbl

[16] Turaev V., Homotopy field theory in dimension 2 and group-algebras, E-print, 1999

[17] Vafa C., “Topological Landau–Ginzburg models”, Mod. Phys. Lett. A, 6:4 (1991), 337–346 | DOI | MR | Zbl

[18] Witten E., “On the structure of the topological phase of two-dimensional gravity”, Nucl. Phys. B, 340 (1990), 281–332 | DOI | MR