Eulerian Limit for 2D Navier--Stokes Equation and Damped/Driven KdV Equation as Its Model
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 134-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the inviscid limits for the randomly forced 2D Navier–Stokes equation (NSE) and the damped/driven KdV equation. The former describes the space-periodic 2D turbulence in terms of a special class of solutions for the free Euler equation, and we view the latter as its model. We review and revise recent results on the inviscid limit for the perturbed KdV and use them to suggest a setup which could be used to make a next step in the study of the inviscid limit of 2D NSE. The proposed approach is based on an ergodic hypothesis for the flow of the 2D Euler equation on iso-integral surfaces. It invokes a Whitham equation for the 2D Navier–Stokes equation, written in terms of the ergodic measures.
@article{TRSPY_2007_259_a8,
     author = {S. B. Kuksin},
     title = {Eulerian {Limit} for {2D} {Navier--Stokes} {Equation} and {Damped/Driven} {KdV} {Equation} as {Its} {Model}},
     journal = {Informatics and Automation},
     pages = {134--142},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a8/}
}
TY  - JOUR
AU  - S. B. Kuksin
TI  - Eulerian Limit for 2D Navier--Stokes Equation and Damped/Driven KdV Equation as Its Model
JO  - Informatics and Automation
PY  - 2007
SP  - 134
EP  - 142
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a8/
LA  - en
ID  - TRSPY_2007_259_a8
ER  - 
%0 Journal Article
%A S. B. Kuksin
%T Eulerian Limit for 2D Navier--Stokes Equation and Damped/Driven KdV Equation as Its Model
%J Informatics and Automation
%D 2007
%P 134-142
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a8/
%G en
%F TRSPY_2007_259_a8
S. B. Kuksin. Eulerian Limit for 2D Navier--Stokes Equation and Damped/Driven KdV Equation as Its Model. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 134-142. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a8/