New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 106-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

We carry out a detailed analysis of the existence, asymptotics, and stability problems for periodic solutions that bifurcate from the zero equilibrium state in systems with large delay. The account is based on a specific meaningful example given by a certain scalar nonlinear second-order differential–difference equation that is a mathematical model of a single-circuit $RCL$-oscillator with delay in a feedback loop.
@article{TRSPY_2007_259_a7,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {New {Methods} for {Proving} the {Existence} and {Stability} of {Periodic} {Solutions} in {Singularly} {Perturbed} {Delay} {Systems}},
     journal = {Informatics and Automation},
     pages = {106--133},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a7/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems
JO  - Informatics and Automation
PY  - 2007
SP  - 106
EP  - 133
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a7/
LA  - ru
ID  - TRSPY_2007_259_a7
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems
%J Informatics and Automation
%D 2007
%P 106-133
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a7/
%G ru
%F TRSPY_2007_259_a7
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 106-133. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a7/

[1] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii, Tr. MIAN, 222, Nauka, M., 1998

[2] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v $RCLG$-avtogeneratore: teoreticheskii analiz i rezultaty eksperimenta”, Tr. MIAN, 233 (2001), 153–207 | MR | Zbl

[3] Strelkov S. P., Vvedenie v teoriyu kolebanii, Nauka, M., 1964 | MR | Zbl

[4] Azyan Yu. M., Migulin V. V., “Ob avtokolebaniyakh v sisteme s zapazdyvayuschei obratnoi svyazyu”, Radiotekhnika i elektronika, 1:4 (1956), 418–427

[5] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[6] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[7] Mischenko E. F., Kolesov Yu. C., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR

[8] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004 | Zbl

[9] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[10] Kaschenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Dif. uravneniya, 25:8 (1989), 1448–1451 | MR | Zbl

[11] Kaschenko S. A., “Uravnenie Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, ZhVMiMF, 38:3 (1998), 457–465 | MR | Zbl

[12] Vasileva A. B., Kaschenko S. A., Kolesov Yu. C., Rozov N. Kh., “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Mat. sb., 130:4 (1986), 488–499 | MR

[13] Hale J. K., Huang W., “Square and pulse waves in matrix delay differential equations”, Dyn. Syst. and Appl., 1:1 (1992), 51–70 | MR | Zbl

[14] Kolesov Yu. C., Shvitra D. I., Avtokolebaniya v sistemakh s zapazdyvaniem, Mokslas, Vilnyus, 1979 | MR | Zbl

[15] Kolesov Yu. C., “Matematicheskie modeli ekologii”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1979, 3–40 | MR | Zbl

[16] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005

[17] Kubyshkin E. P., “Parametricheskii rezonans v lineinykh periodicheskikh sistemakh s posledeistviem”, Issledovaniya po ustoichivosti i teorii kolebanii, Yar\nobreak GU, Yaroslavl, 1978, 43–76 | MR | Zbl

[18] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl