Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 77-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a simple relation between certain curvatures of the group of volume-preserving diffeomorphisms and the lifespan of potential solutions to the inviscid Burgers equation before the appearance of shocks. We show that shock formation corresponds to a focal point of the group of volume-preserving diffeomorphisms regarded as a submanifold of the full diffeomorphism group and, consequently, to a conjugate point along a geodesic in the Wasserstein space of densities. This relates the ideal Euler hydrodynamics (via Arnold's approach) to shock formation in the multidimensional Burgers equation and the Kantorovich–Wasserstein geometry of the space of densities.
@article{TRSPY_2007_259_a5,
     author = {B. A. Khesin and G. Misio{\l}ek},
     title = {Shock {Waves} for the {Burgers} {Equation} and {Curvatures} of {Diffeomorphism} {Groups}},
     journal = {Informatics and Automation},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a5/}
}
TY  - JOUR
AU  - B. A. Khesin
AU  - G. Misiołek
TI  - Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups
JO  - Informatics and Automation
PY  - 2007
SP  - 77
EP  - 85
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a5/
LA  - en
ID  - TRSPY_2007_259_a5
ER  - 
%0 Journal Article
%A B. A. Khesin
%A G. Misiołek
%T Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups
%J Informatics and Automation
%D 2007
%P 77-85
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a5/
%G en
%F TRSPY_2007_259_a5
B. A. Khesin; G. Misiołek. Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 77-85. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a5/