Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a simple relation between certain curvatures of the group of volume-preserving diffeomorphisms and the lifespan of potential solutions to the inviscid Burgers equation before the appearance of shocks. We show that shock formation corresponds to a focal point of the group of volume-preserving diffeomorphisms regarded as a submanifold of the full diffeomorphism group and, consequently, to a conjugate point along a geodesic in the Wasserstein space of densities. This relates the ideal Euler hydrodynamics (via Arnold's approach) to shock formation in the multidimensional Burgers equation and the Kantorovich–Wasserstein geometry of the space of densities.
@article{TRSPY_2007_259_a5,
     author = {B. A. Khesin and G. Misio{\l}ek},
     title = {Shock {Waves} for the {Burgers} {Equation} and {Curvatures} of {Diffeomorphism} {Groups}},
     journal = {Informatics and Automation},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a5/}
}
TY  - JOUR
AU  - B. A. Khesin
AU  - G. Misiołek
TI  - Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups
JO  - Informatics and Automation
PY  - 2007
SP  - 77
EP  - 85
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a5/
LA  - en
ID  - TRSPY_2007_259_a5
ER  - 
%0 Journal Article
%A B. A. Khesin
%A G. Misiołek
%T Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups
%J Informatics and Automation
%D 2007
%P 77-85
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a5/
%G en
%F TRSPY_2007_259_a5
B. A. Khesin; G. Misiołek. Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 77-85. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a5/

[1] Arnold V. I., “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits”, Ann. Inst. Fourier, 16:1 (1966), 319–361 | MR

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 2-e izd., Nauka, M., 1979 | MR

[3] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR

[4] Arnold V. I., Baryshnikov Yu. M., Bogaevsky I. A., “Singularities and bifurcations of potential flows”, Gurbatov S. N., Malakhov A. N., Saichev A. I. Nonlinear random waves and turbulence in nondispersive media: waves, rays, particles, Suppl. 2, Nonlin. Sci.: Theory and Appl., Manchester Univ. Press, Manchester, 1991, 290–300 | MR

[5] Bao D., Ratiu T., “On the geometrical origin and the solutions of a degenerate Monge–Ampère equation”, Differential geometry, Pt. 1: Partial differential equations on manifolds, Proc. Symp. Pure Math., 54, Amer. Math. Soc., Providence, RI, 1993, 55–68 | MR | Zbl

[6] Bogaevsky I. A., “Perestroikas of shocks and singularities of minimum functions”, Physica D, 173:1–2 (2002), 1–28 ; arXiv: /math.AP/0204237 | DOI | MR | Zbl

[7] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the notion of an incompressible fluid”, Ann. Math. Ser. 2, 92 (1970), 102–163 | DOI | MR | Zbl

[8] Frisch U., Bec J., ““Burgulence””, New trends in turbulence, Les Houches, 2000, eds. M. Lesieur, A. Yaglom, F. David, Springer, Berlin, 2001, 341–383 | MR

[9] Khesin B., Misiołek G., “Asymptotic directions, Monge–Ampère equations and the geometry of diffeomorphism groups”, J. Math. Fluid Mech., 7, Suppl. 3 (2005), S365–S375 | DOI | MR | Zbl

[10] Lukatskii A. M., “O krivizne gruppy diffeomorfizmov, sokhranyayuschikh meru $n$-mernogo tora”, Sib. mat. zhurn., 25:6 (1984), 76–88 | MR

[11] McCann R. J., “Polar factorization of maps on Riemannian manifolds”, Geom. and Funct. Anal., 11:3 (2001), 589–608 | DOI | MR | Zbl

[12] Misiołek G., “Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms”, Indiana Univ. Math. J., 42:1 (1993), 215–235 | DOI | MR | Zbl

[13] Otto F., “The geometry of dissipative evolution equations: The porous medium equation”, Commun. Part. Diff. Equat., 26:1–2 (2001), 101–174 | DOI | MR | Zbl

[14] Preston S. C., “For ideal fluids, Eulerian and Lagrangian instabilities are equivalent”, Geom. and Funct. Anal., 14:5 (2004), 1044–1062 | DOI | MR | Zbl

[15] Villani C., Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | MR | Zbl