Total Rigidity of Polynomial Foliations on the Complex Projective Plane
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 64-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Polynomial foliations of the complex plane are topologically rigid. Roughly speaking, this means that the topological equivalence of two foliations implies their affine equivalence. There exist various nonequivalent formalizations of the notion of topological rigidity. Generic polynomial foliations of fixed degree have the so-called property of absolute rigidity, which is the weakest form of topological rigidity. This property was discovered by the author more than 30 years ago. The genericity conditions imposed at that time were very restrictive. Since then, this topic has been studied by Shcherbakov, Gómez-Mont, Nakai, Lins Neto–Sad–Scárdua, Loray–Rebelo, and others. They relaxed the genericity conditions and increased the dimension. The main conjecture in this field states that a generic polynomial foliation of the complex plane is topologically equivalent to only finitely many foliations. The main result of this paper is weaker than this conjecture but also makes it possible to compare topological types of distant foliations.
@article{TRSPY_2007_259_a4,
     author = {Yu. S. Ilyashenko},
     title = {Total {Rigidity} of {Polynomial} {Foliations} on the {Complex} {Projective} {Plane}},
     journal = {Informatics and Automation},
     pages = {64--76},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a4/}
}
TY  - JOUR
AU  - Yu. S. Ilyashenko
TI  - Total Rigidity of Polynomial Foliations on the Complex Projective Plane
JO  - Informatics and Automation
PY  - 2007
SP  - 64
EP  - 76
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a4/
LA  - ru
ID  - TRSPY_2007_259_a4
ER  - 
%0 Journal Article
%A Yu. S. Ilyashenko
%T Total Rigidity of Polynomial Foliations on the Complex Projective Plane
%J Informatics and Automation
%D 2007
%P 64-76
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a4/
%G ru
%F TRSPY_2007_259_a4
Yu. S. Ilyashenko. Total Rigidity of Polynomial Foliations on the Complex Projective Plane. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 64-76. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a4/

[1] Dulac H., “Détermination et intégration d'une certaine classe d'équations diffeérentielle ayant pour point singulier un centre”, Bull. sci. math. Sér. 2, 32 (1908), 230–252

[2] Ilyashenko Yu. S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. sem. I. G. Petrovskogo, 4, 1978, 83–136 | MR

[3] Ilyashenko Yu., Yakovenko S., Lectures on analytic differential equations, Amer. Math. Soc., Providence, RI, 2007 | MR

[4] Lins Neto A., Sad P., Scárdua B., “On topological rigidity of projective foliations”, Bull. Soc. math. France, 126:3 (1998), 381–406 | MR | Zbl

[5] Naishul V. A., “Kompleksnye tsentry”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1975, no. 5, 66–69 | MR

[6] Nakai I., “Separatrices for nonsolvable dynamics on $\mathbb C,0$”, Ann. Inst. Fourier, 44:2 (1994), 569–599 | MR | Zbl

[7] Pyartli A. S., “Kvadratichnye vektornye polya na $\mathbb C\mathrm P^2$ s razreshimoi gruppoi monodromii na beskonechnosti”, Tr. MIAN, 254, 2006, 130–161 | MR

[8] Scherbakov A. A., “Topologicheskaya i analiticheskaya sopryazhennost nekommutativnykh grupp rostkov konformnykh otobrazhenii”, Tr. sem. I. G. Petrovskogo, 10, 1984, 170–196 | Zbl

[9] Scherbakov A. A., “Dinamika lokalnykh grupp konformnykh otobrazhenii i obschie svoistva differentsialnykh uravnenii na $\mathbb C^2$”, Tr. MIAN, 254, 2006, 111–129

[10] Żołądek H., The monodromy group, Birkhäuser, Bazel, 2006 | MR | Zbl