Determinantal Singularities and Newton Polyhedra
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 20-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological invariants of determinantal singularities are studied in terms of Newton polyhedra. The approach is based on the notion of a toric resolution of a determinantal singularity. Computations are carried out in the more general setting of “elimination theory in the context of Newton polyhedra.”
@article{TRSPY_2007_259_a2,
     author = {A. I. \`Esterov},
     title = {Determinantal {Singularities} and {Newton} {Polyhedra}},
     journal = {Informatics and Automation},
     pages = {20--38},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a2/}
}
TY  - JOUR
AU  - A. I. Èsterov
TI  - Determinantal Singularities and Newton Polyhedra
JO  - Informatics and Automation
PY  - 2007
SP  - 20
EP  - 38
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a2/
LA  - en
ID  - TRSPY_2007_259_a2
ER  - 
%0 Journal Article
%A A. I. Èsterov
%T Determinantal Singularities and Newton Polyhedra
%J Informatics and Automation
%D 2007
%P 20-38
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a2/
%G en
%F TRSPY_2007_259_a2
A. I. Èsterov. Determinantal Singularities and Newton Polyhedra. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 20-38. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a2/