Determinantal Singularities and Newton Polyhedra
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 20-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological invariants of determinantal singularities are studied in terms of Newton polyhedra. The approach is based on the notion of a toric resolution of a determinantal singularity. Computations are carried out in the more general setting of “elimination theory in the context of Newton polyhedra.”
@article{TRSPY_2007_259_a2,
     author = {A. I. \`Esterov},
     title = {Determinantal {Singularities} and {Newton} {Polyhedra}},
     journal = {Informatics and Automation},
     pages = {20--38},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a2/}
}
TY  - JOUR
AU  - A. I. Èsterov
TI  - Determinantal Singularities and Newton Polyhedra
JO  - Informatics and Automation
PY  - 2007
SP  - 20
EP  - 38
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a2/
LA  - en
ID  - TRSPY_2007_259_a2
ER  - 
%0 Journal Article
%A A. I. Èsterov
%T Determinantal Singularities and Newton Polyhedra
%J Informatics and Automation
%D 2007
%P 20-38
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a2/
%G en
%F TRSPY_2007_259_a2
A. I. Èsterov. Determinantal Singularities and Newton Polyhedra. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 20-38. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a2/

[1] Bernshtein D. N., “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 1–4 | MR | Zbl

[2] Bivià-Ausina C., “The integral closure of modules, Buchsbaum–Rim multiplicities and Newton polyhedra”, J. London Math. Soc. Ser. 2, 69 (2004), 407–427 | DOI | MR | Zbl

[3] Ebeling W., Gusein-Zade S. M., Seade J., “Homological index for 1-forms and a Milnor number for isolated singularities”, Intern. J. Math., 15:9 (2004), 895–905 | DOI | MR | Zbl

[4] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[5] Kazarnovskii B. Ya., “Ukorocheniya sistem uravnenii, idealov i mnogoobrazii”, Izv. RAN. Ser. mat., 63:3 (1999), 119–132 | MR | Zbl

[6] Kazarnovskii B. Ya., “c-veery i mnogogranniki Nyutona algebraicheskikh mnogoobrazii”, Izv. RAN. Ser. mat., 67:3 (2003), 23–44 | MR | Zbl

[7] Khovanskii A. G., “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 56–64 | MR | Zbl

[8] Khovanskii A. G., “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. analiz i ego pril., 12:1 (1978), 51–61 | MR

[9] Kouchnirenko A. G., “Polyèdres de Newton et nombres de Milnor”, Invent. math., 32 (1976), 1–31 | DOI | MR

[10] Oka M., “Principal zeta-function of non-degenerate complete intersection singularity”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 37 (1990), 11–32 | MR | Zbl

[11] Oka M., Non-degenerate complete intersection singularity, Actualités Mathématiques, Hermann, Paris, 1997 | MR | Zbl

[12] Sturmfels B., “On the Newton polytope of the resultant”, J. Alg. Comb., 3 (1994), 207–236 | DOI | MR | Zbl

[13] Varchenko A. N., “Zeta-function of monodromy and Newton's diagram”, Invent. math., 37 (1976), 253–262 | DOI | MR | Zbl

[14] Esterov A., “Indices of 1-forms and Newton polyhedra”, Rev. Mat. Complut., 18:1 (2005), 233–242 | MR | Zbl

[15] Esterov A. I., “Indeksy 1-form, rezultanty i mnogogranniki Nyutona”, UMN, 60:2 (2005), 181–182 | MR | Zbl

[16] Esterov A. I., “Indeksy 1-form, indeksy peresecheniya i mnogogranniki Nyutona”, Mat. sb., 197:7 (2006), 137–160 | MR | Zbl

[17] Esterov A., “Multiplicities of degenerations of matrices and Newton polyhedra”, RIMS Kôkyûroku (to appear)

[18] Esterov A., Khovanskii A. G., “Elimination theory and Newton polytopes”, Funct. Anal. and Other Math. (to appear) | MR