On an Invariant M\"obius Measure and the Gauss--Kuzmin Face Distribution
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 79-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Möbius measures of the manifold of $n$-dimensional continued fractions in the sense of Klein. By definition any Möbius measure is invariant under the natural action of the group of projective transformations $\mathrm{PGL}(n+1)$ and is an integral of some form of the maximal dimension. It turns out that all Möbius measures are proportional, and the corresponding forms are written explicitly in some special coordinates. The formulae obtained allow one to compare approximately the relative frequencies of the $n$-dimensional faces of given integer-affine types for $n$-dimensional continued fractions. In this paper we make numerical calculations of some relative frequencies in the case of $n=2$.
@article{TRSPY_2007_258_a7,
     author = {O. N. Karpenkov},
     title = {On an {Invariant} {M\"obius} {Measure} and the {Gauss--Kuzmin} {Face} {Distribution}},
     journal = {Informatics and Automation},
     pages = {79--92},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a7/}
}
TY  - JOUR
AU  - O. N. Karpenkov
TI  - On an Invariant M\"obius Measure and the Gauss--Kuzmin Face Distribution
JO  - Informatics and Automation
PY  - 2007
SP  - 79
EP  - 92
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a7/
LA  - ru
ID  - TRSPY_2007_258_a7
ER  - 
%0 Journal Article
%A O. N. Karpenkov
%T On an Invariant M\"obius Measure and the Gauss--Kuzmin Face Distribution
%J Informatics and Automation
%D 2007
%P 79-92
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a7/
%G ru
%F TRSPY_2007_258_a7
O. N. Karpenkov. On an Invariant M\"obius Measure and the Gauss--Kuzmin Face Distribution. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 79-92. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a7/

[1] Avdeeva M.O., Bykovskii V.A., Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint, Dalnauka, Vladivostok, 2002

[2] Avdeeva M.O., “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funkts. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl

[3] Arnold V.I., “$A$-graded algebras and continued fractions”, Commun. Pure and Appl. Math., 42 (1989), 993–1000 | DOI | MR | Zbl

[4] Arnold V.I., Pseudoperiodic topology, AMS Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999 | MR

[5] Arnold V.I., “Higher dimensional continued fractions”, Regular and Chaotic Dyn., 3:3 (1998), 10–17 | DOI | MR | Zbl

[6] Arnold V.I., Zadachi Arnolda, Fazis, M., 2000 | MR

[7] Arnold V.I., Tsepnye drobi, MTsNMO, M., 2002

[8] Briggs K., Klein polyhedra, , 2002 http://keithbriggs.info/klein-polyhedra.html

[9] Bryuno A.D., Parusnikov V.I., “Mnogogranniki Kleina dlya dvukh kubicheskikh form Davenporta”, Mat. zametki, 56:4 (1994), 9–27 | MR | Zbl

[10] Wirsing E., “On the theorem of Gauss–Kusmin–Lévy and a Frobenius-type theorem for function spaces”, Acta Arith., 24 (1974), 507–528 | MR | Zbl

[11] Gauss C.F., Recherches arithmétiques, Blanchard, Paris, 1807

[12] German O.N., “Parusa i bazisy Gilberta”, Diskretnaya geometriya i geometriya chisel, Tr. MIAN, 239, Nauka, M., 2002, 98–105 | MR

[13] Karpenkov O.N., “O triangulyatsiyakh torov, svyazannykh s dvumernymi tsepnymi drobyami kubicheskikh irratsionalnostei”, Funkts. analiz i ego pril., 38:2 (2004), 28–37 | MR | Zbl

[14] Karpenkov O.N., “O dvumernykh tsepnykh drobyakh tselochislennykh giperbolicheskikh matrits s nebolshoi normoi”, UMN, 59:5 (2004), 149–150 | MR | Zbl

[15] Karpenkov O., On some new approach to constructing periodic continued fractions, Preprint No 12, Lab. Math. Discr. CNRS, Luminy, 2004 ; http://iml.univ-mrs.fr/editions/preprint2004/files/karpenkov.pdf | MR

[16] Karpenkov O.N., “Energiya Mebiusa grafov”, Mat. zametki, 79:1 (2006), 146–149 | MR | Zbl

[17] Karpenkov O., Completely empty pyramids on integer lattices and two-dimensional faces of multidimensional continued fractions, , 2005 arXiv: math.NT/0510482 | MR

[18] Karpenkov O.N., “Klassifikatsiya trekhmernykh mnogoetazhnykh vpolne pustykh vypuklykh otmechennykh piramid”, UMN, 60:1 (2005), 169–170 | MR | Zbl

[19] Karpenkov O.N., “Three examples of three-dimensional continued fractions in the sense of Klein”, C. R. Math. Acad. Sci. Paris, 343:1 (2006), 5–7 | MR | Zbl

[20] Klein F., “Ueber einegeometrische Auffassung der gewöhnliche Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen. Math.-phys. Kl., 3 (1895), 357–359

[21] Klein F., “Sur une représentation géométrique de développement en fraction continue ordinaire”, Nouv. Ann. Math., 15:3 (1896), 327–331 | Zbl

[22] Kontsevich M.L., Suhov Yu.M., “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic topology, AMS Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 9–27 | MR | Zbl

[23] Korkina E.I., “La périodicité des fractions continues multidimensionnelles”, C. R. Acad. Sci. Paris Sér. 1, 319:8 (1994), 777–780 | MR | Zbl

[24] Korkina E.I., Osobennosti gladkikh otobrazhenii s dopolnitelnymi strukturami, Tr. MIAN, 209, Nauka, M., 1995 | MR

[25] Korkina E.I., “The simplest 2-dimensional continued fraction”, J. Math. Sci., 82:5 (1996), 3680–3685 | DOI | MR | Zbl

[26] Kuzmin R.O., “Ob odnoi zadache Gaussa”, DAN A, 1928, no. 18–19, 375–380

[27] Lachaud G., “Polyèdre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sci. Paris. Sér. 1, 317:8 (1993), 711–716 | MR | Zbl

[28] Lachaud G., Voiles et polyèdres de Klein, Preprint No 95-22, Lab. Math. Discr. CNRS, Luminy, 1995

[29] Lévy P., “Sur les lois de probabilité dont dépendent les quotients complets et incomplets d'une fraction continue”, Bull. Soc. Math. France, 57 (1929), 178–194 | MR | Zbl

[30] Mussafir Zh.-O., “Parusa i bazisy Gilberta”, Funkts. analiz i ego pril., 34:2 (2000), 43–49 | MR

[31] Moussafir J.-O., Voiles et polyèdres de Klein: Géométrie, algorithmes et statistiques, Doc. Sci. Thèse, Univ. Paris IX–Dauphine, 2000; http://www.ceremade.dauphine.fr/~msfr/articles/these.ps.gz

[32] Okazaki R., “On an effective determination of a Shintani's decomposition of the cone $\mathbb R^n_+$”, J. Math. Kyoto Univ., 33:4 (1993), 1057–1070 | MR | Zbl

[33] O'Hara J., Energy of knots and conformal geometry, Ser. Knots and Everything, 33, World Sci., River Edge, NJ, 2003, 288 pp. | MR

[34] Parusnikov V.I., “Mnogogranniki Kleina dlya chetvertoi ekstremalnoi kubicheskoi formy”, Mat. zametki, 67:1 (2000), 110–128 | MR | Zbl

[35] Tsuchihashi H., “Higher dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J., 35:4 (1983), 607–639 | DOI | MR | Zbl

[36] Freedman M.H., He Z.-X., Wang Z., “Möbius energy of knots and unknots”, Ann. Math. Ser. 2, 139:1 (1994), 1–50 | DOI | MR | Zbl

[37] Khinchin A.Ya., Tsepnye drobi, 3-e izd., Fizmatgiz, M., 1961

[38] Hermite C., “Letter to C. D. J. Jacobi”, J. Reine und Angew. Math., 40 (1839), 286