On the Power Structure over the Grothendieck Ring of Varieties and Its Applications
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 58-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the notion of a power structure over a ring and the geometric description of the power structure over the Grothendieck ring of complex quasi-projective varieties and show some examples of applications to generating series of classes of configuration spaces (for example, nested Hilbert schemes of J. Cheah) and wreath product orbifolds.
@article{TRSPY_2007_258_a5,
     author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez},
     title = {On the {Power} {Structure} over the {Grothendieck} {Ring} of {Varieties} and {Its} {Applications}},
     journal = {Informatics and Automation},
     pages = {58--69},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a5/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - I. Luengo
AU  - A. Melle-Hernández
TI  - On the Power Structure over the Grothendieck Ring of Varieties and Its Applications
JO  - Informatics and Automation
PY  - 2007
SP  - 58
EP  - 69
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a5/
LA  - ru
ID  - TRSPY_2007_258_a5
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A I. Luengo
%A A. Melle-Hernández
%T On the Power Structure over the Grothendieck Ring of Varieties and Its Applications
%J Informatics and Automation
%D 2007
%P 58-69
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a5/
%G ru
%F TRSPY_2007_258_a5
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. On the Power Structure over the Grothendieck Ring of Varieties and Its Applications. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 58-69. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a5/

[1] Batyrev V.V., “Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs”, J. Eur. Math. Soc., 1 (1999), 5–33 | DOI | MR | Zbl

[2] Burillo J., “The Poincaré–Hodge polynomial of a symmetric product of compact Kähler manifolds”, Collect. Math., 41 (1990), 59–69 | MR | Zbl

[3] Cheah J., “On the cohomology of Hilbert schemes of points”, J. Alg. Geom., 5 (1996), 479–511 | MR | Zbl

[4] Cheah J., “The virtual Hodge polynomials of nested Hilbert schemes and related varieties”, Math. Ztschr., 227 (1998), 479–504 | DOI | MR | Zbl

[5] Cheah J., “Cellular decompositions for nested Hilbert schemes of points”, Pacif. J. Math., 183 (1998), 39–90 | DOI | MR | Zbl

[6] Dixon L., Harvey J.A., Vafa C., Witten E., “Strings on orbifolds. I”, Nucl. Phys. B, 261 (1985), 678–686 | DOI | MR

[7] Göttsche L., “On the motive of the Hilbert scheme of points on a surface”, Math. Res. Lett., 8 (2001), 613–627 | MR | Zbl

[8] Gusein-Zade S.M., Luengo I., Melle-Hernández A., “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11 (2004), 49–57 | MR | Zbl

[9] Gusein-Zade S.M., Luengo I., Melle-Hernández A., “Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points”, Mich. Math. J., 54:2 (2006), 353–359 ; arXiv: math.AG/0407204 | DOI | MR | Zbl

[10] Gusein-Zade S.M., Luengo I., Mele-Ernandez A., “Integrirovanie po prostranstvu neparametrizovannykh dug i motivnye analogi dzeta-funktsii monodromii”, Geometricheskaya topologiya, dikretnaya geometriya i teoriya mnozhestv: Sbornik statei, Tr. MIAN, 252, Nauka, M., 2006, 71–82 | MR

[11] Kapranov M., The elliptic curve in the $S$-duality theory and Eisenstein series for Kac–Moody groups, , 2000 arXiv: math.AG/0001005

[12] Li W.-P., Qin Zh., On the Euler numbers of certain moduli spaces of curves and points, , 2005 arXiv: math.AG/0508132 | MR

[13] Macdonald I.G., “The Poincaré polynomial of a symmetric product”, Proc. Cambridge Philos. Soc., 58 (1962), 563–568 | DOI | MR | Zbl

[14] Tamanoi H., “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava $K$-theory”, Alg. and Geom. Topology, 1 (2001), 115–141 | DOI | MR | Zbl

[15] Wang W., “Equivariant $K$-theory, wreath products, and Heisenberg algebra”, Duke Math. J., 103 (2000), 1–23 | DOI | MR | Zbl

[16] Wang W., Zhou J., “Orbifold Hodge numbers of wreath product orbifolds”, J. Geom. and Phys., 38 (2001), 152–169 | MR | Zbl

[17] Zaslow E., “Topological orbifold models and quantum cohomology rings”, Commun. Math. Phys., 156 (1993), 301–331 | DOI | MR | Zbl