Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2007_258_a5, author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez}, title = {On the {Power} {Structure} over the {Grothendieck} {Ring} of {Varieties} and {Its} {Applications}}, journal = {Informatics and Automation}, pages = {58--69}, publisher = {mathdoc}, volume = {258}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a5/} }
TY - JOUR AU - S. M. Gusein-Zade AU - I. Luengo AU - A. Melle-Hernández TI - On the Power Structure over the Grothendieck Ring of Varieties and Its Applications JO - Informatics and Automation PY - 2007 SP - 58 EP - 69 VL - 258 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a5/ LA - ru ID - TRSPY_2007_258_a5 ER -
%0 Journal Article %A S. M. Gusein-Zade %A I. Luengo %A A. Melle-Hernández %T On the Power Structure over the Grothendieck Ring of Varieties and Its Applications %J Informatics and Automation %D 2007 %P 58-69 %V 258 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a5/ %G ru %F TRSPY_2007_258_a5
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. On the Power Structure over the Grothendieck Ring of Varieties and Its Applications. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 58-69. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a5/
[1] Batyrev V.V., “Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs”, J. Eur. Math. Soc., 1 (1999), 5–33 | DOI | MR | Zbl
[2] Burillo J., “The Poincaré–Hodge polynomial of a symmetric product of compact Kähler manifolds”, Collect. Math., 41 (1990), 59–69 | MR | Zbl
[3] Cheah J., “On the cohomology of Hilbert schemes of points”, J. Alg. Geom., 5 (1996), 479–511 | MR | Zbl
[4] Cheah J., “The virtual Hodge polynomials of nested Hilbert schemes and related varieties”, Math. Ztschr., 227 (1998), 479–504 | DOI | MR | Zbl
[5] Cheah J., “Cellular decompositions for nested Hilbert schemes of points”, Pacif. J. Math., 183 (1998), 39–90 | DOI | MR | Zbl
[6] Dixon L., Harvey J.A., Vafa C., Witten E., “Strings on orbifolds. I”, Nucl. Phys. B, 261 (1985), 678–686 | DOI | MR
[7] Göttsche L., “On the motive of the Hilbert scheme of points on a surface”, Math. Res. Lett., 8 (2001), 613–627 | MR | Zbl
[8] Gusein-Zade S.M., Luengo I., Melle-Hernández A., “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11 (2004), 49–57 | MR | Zbl
[9] Gusein-Zade S.M., Luengo I., Melle-Hernández A., “Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points”, Mich. Math. J., 54:2 (2006), 353–359 ; arXiv: math.AG/0407204 | DOI | MR | Zbl
[10] Gusein-Zade S.M., Luengo I., Mele-Ernandez A., “Integrirovanie po prostranstvu neparametrizovannykh dug i motivnye analogi dzeta-funktsii monodromii”, Geometricheskaya topologiya, dikretnaya geometriya i teoriya mnozhestv: Sbornik statei, Tr. MIAN, 252, Nauka, M., 2006, 71–82 | MR
[11] Kapranov M., The elliptic curve in the $S$-duality theory and Eisenstein series for Kac–Moody groups, , 2000 arXiv: math.AG/0001005
[12] Li W.-P., Qin Zh., On the Euler numbers of certain moduli spaces of curves and points, , 2005 arXiv: math.AG/0508132 | MR
[13] Macdonald I.G., “The Poincaré polynomial of a symmetric product”, Proc. Cambridge Philos. Soc., 58 (1962), 563–568 | DOI | MR | Zbl
[14] Tamanoi H., “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava $K$-theory”, Alg. and Geom. Topology, 1 (2001), 115–141 | DOI | MR | Zbl
[15] Wang W., “Equivariant $K$-theory, wreath products, and Heisenberg algebra”, Duke Math. J., 103 (2000), 1–23 | DOI | MR | Zbl
[16] Wang W., Zhou J., “Orbifold Hodge numbers of wreath product orbifolds”, J. Geom. and Phys., 38 (2001), 152–169 | MR | Zbl
[17] Zaslow E., “Topological orbifold models and quantum cohomology rings”, Commun. Math. Phys., 156 (1993), 301–331 | DOI | MR | Zbl