Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2007_258_a4, author = {V. V. Goryunov}, title = {Symmetric $X_9$ {Singularities} and {Complex} {Affine} {Reflection} {Groups}}, journal = {Informatics and Automation}, pages = {49--57}, publisher = {mathdoc}, volume = {258}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a4/} }
V. V. Goryunov. Symmetric $X_9$ Singularities and Complex Affine Reflection Groups. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 49-57. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a4/
[1] Arnold V.I., “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego pril., 6:4 (1972), 3–25 | MR
[2] Arnold V.I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR
[3] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii: Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR
[4] Arnold V.I., Vasilev V.A., Goryunov V.V., Lyashko O.V., Osobennosti. I. Lokalnaya i globalnaya teoriya, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 6, VINITI, M., 1988 | MR
[5] Bourbaki N., Éléments de mathematique. Fasc. 34: Groupes et algèbres de Lie, Hermann, Paris, 1968, Ch. 4–6 | MR
[6] Brieskorn E., “Singular elements of semi-simple algebraic groups”, Actes Congrès Intern. Math. (Nice, 1970), 2, Gauthier-Villars, Paris, 1971, 279–284 | MR
[7] Broué M., Malle G., “Zyklotomische Heckealgebren”, Astérisque, 212 (1993), 119–189 | MR | Zbl
[8] Broué M., Malle G., Rouquier R., “Complex reflection groups, braid groups, Hecke algebras”, J. Reine und Angew. Math., 500 (1998), 127–190 | MR | Zbl
[9] Cohen A.M., “Finite complex reflection groups”, Ann. Sci. École Norm. Supér. Sér. 4, 9:3 (1976), 379–436 | MR | Zbl
[10] Damon J., The unfolding and determinacy theorems for subgroups of $\mathcal A$ and $\mathcal K$, Mem. AMS, 50, no. 306, Amer. Math. Soc., Providence, RI, 1984 | MR
[11] Goryunov V.V., “Unitarnye gruppy otrazhenii, svyazannye s osobennostyami funktsii s tsiklicheskoi simmetriei”, UMN, 54:5 (1999), 3–24 | MR | Zbl
[12] Goryunov V.V., “Unitary reflection groups and automorphisms of simple hypersurface singularities New developments in singularity theory”, New developments in singularity theory, Cambridge, 2000, Kluwer, Dordrecht, 2001, 305–328 | MR | Zbl
[13] Goryunov V.V., Beins K.E., “Tsiklicheski ekvivariantnye osobennosti funktsii i unitarnye gruppy otrazhenii $G(2m,2,n)$, $G_9$ i $G_{31}$”, Algebra i analiz, 11:5 (1999), 74–91 | MR
[14] Goryunov V.V., Man S.H., Singularity theory and its applications, Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2006 | MR | Zbl
[15] Malle G., “Presentations for crystallographic complex reflection groups”, Transform. Groups., 1:3 (1996), 259–277 | DOI | MR | Zbl
[16] Popov V.L., Discrete complex reflection groups, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniv. Utrecht, Utrecht, 1982, 89 pp. | MR | Zbl
[17] Shephard G.C., Todd J.A., “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | MR | Zbl