On Binary Quadratic Forms with the Semigroup Property
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 28-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quadratic form $f$ is said to have the semigroup property if its values at the points of the integer lattice form a semigroup under multiplication. A problem of V. Arnold is to describe all binary integer quadratic forms with the semigroup property. If there is an integer bilinear map $s$ such that $f(s(\mathbf x,\mathbf y))=f(\mathbf x)f(\mathbf y)$ for all vectors $\mathbf x$ and $\mathbf y$ from the integer two-dimensional lattice, then the form $f$ has the semigroup property. We give an explicit integer parameterization of all pairs $(f,s)$ with the property stated above. We do not know any other examples of forms with the semigroup property.
@article{TRSPY_2007_258_a3,
     author = {F. Aicardi and V. A. Timorin},
     title = {On {Binary} {Quadratic} {Forms} with the {Semigroup} {Property}},
     journal = {Informatics and Automation},
     pages = {28--48},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a3/}
}
TY  - JOUR
AU  - F. Aicardi
AU  - V. A. Timorin
TI  - On Binary Quadratic Forms with the Semigroup Property
JO  - Informatics and Automation
PY  - 2007
SP  - 28
EP  - 48
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a3/
LA  - en
ID  - TRSPY_2007_258_a3
ER  - 
%0 Journal Article
%A F. Aicardi
%A V. A. Timorin
%T On Binary Quadratic Forms with the Semigroup Property
%J Informatics and Automation
%D 2007
%P 28-48
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a3/
%G en
%F TRSPY_2007_258_a3
F. Aicardi; V. A. Timorin. On Binary Quadratic Forms with the Semigroup Property. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 28-48. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a3/

[1] Aicardi F., “On trigroups and semigroups of binary quadratic forms values and of their associated linear operators”, Moscow Math. J., 6:4 (2006), 589–627 | MR | Zbl

[2] Arnold V., “Arithmetics of binary quadratic forms, symmetry of their continued fractions and geometry of their de Sitter world”, Bull. Brazil. Math. Soc., 34:1 (2003), 1–42 | DOI | MR | Zbl

[3] Bhargava M., “Higher composition laws. I: A new view on Gauss composition, and quadratic generalizations”, Ann. Math. Ser. 2, 159:1 (2004), 217–250 | DOI | MR | Zbl

[4] Gauss C.F., Disquisitiones arithmeticae, Yale Univ. Press, New Haven, London, 1966 | MR | Zbl

[5] Kishi Y., Miyake K., “Parametrization of the quadratic fields whose class numbers are divisible by three”, J. Number Theory, 80:2 (2000), 209–217 | DOI | MR | Zbl

[6] Martinet J., Perfect lattices in Euclidean spaces, Grundl. Math. Wissensch., 327, Springer, Berlin, 2003 | MR | Zbl