Rolling Balls and Octonions
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 17-27

Voir la notice de l'article provenant de la source Math-Net.Ru

In this semi-expository paper we disclose hidden symmetries of a classical nonholonomic kinematic model and try to explain the geometric meaning of the basic invariants of vector distributions.
@article{TRSPY_2007_258_a2,
     author = {A. A. Agrachev},
     title = {Rolling {Balls} and {Octonions}},
     journal = {Informatics and Automation},
     pages = {17--27},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a2/}
}
TY  - JOUR
AU  - A. A. Agrachev
TI  - Rolling Balls and Octonions
JO  - Informatics and Automation
PY  - 2007
SP  - 17
EP  - 27
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a2/
LA  - ru
ID  - TRSPY_2007_258_a2
ER  - 
%0 Journal Article
%A A. A. Agrachev
%T Rolling Balls and Octonions
%J Informatics and Automation
%D 2007
%P 17-27
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a2/
%G ru
%F TRSPY_2007_258_a2
A. A. Agrachev. Rolling Balls and Octonions. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 17-27. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a2/