Rolling Balls and Octonions
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 17-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this semi-expository paper we disclose hidden symmetries of a classical nonholonomic kinematic model and try to explain the geometric meaning of the basic invariants of vector distributions.
@article{TRSPY_2007_258_a2,
     author = {A. A. Agrachev},
     title = {Rolling {Balls} and {Octonions}},
     journal = {Informatics and Automation},
     pages = {17--27},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a2/}
}
TY  - JOUR
AU  - A. A. Agrachev
TI  - Rolling Balls and Octonions
JO  - Informatics and Automation
PY  - 2007
SP  - 17
EP  - 27
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a2/
LA  - ru
ID  - TRSPY_2007_258_a2
ER  - 
%0 Journal Article
%A A. A. Agrachev
%T Rolling Balls and Octonions
%J Informatics and Automation
%D 2007
%P 17-27
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a2/
%G ru
%F TRSPY_2007_258_a2
A. A. Agrachev. Rolling Balls and Octonions. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 17-27. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a2/

[1] Agrachev A.A., “Feedback-invariant optimal control theory and differential geometry. II: Jacobi curves for singular extremals”, J. Dyn. and Control Syst., 4:4 (1998), 583–604 | DOI | MR | Zbl

[2] Agrachev A.A., Sachkov Yu.L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004, 392 pp. | Zbl

[3] Agrachev A.A., Zelenko I., “Geometry of Jacobi curves. I, II”, J. Dyn. and Control Syst., 8:1 (2002), 93–140 ; 2, 167–215 | DOI | MR | Zbl | MR | Zbl

[4] Agrachev A., Zelenko I., “Nurowski's conformal structures for (2,5)-distributions via dynamics of abnormal extremals”, Developments of Cartan geometry and related mathematical problems, Proc. RIMS Symp. (Kyoto, 2005), Kyoto Univ., Kyoto, 2006, 204–218

[5] Bryant R., Hsu L., “Rigidity of integral curves of rank 2 distributions”, Invent. math., 114:2 (1993), 435–461 | DOI | MR | Zbl

[6] Cartan E., “Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. Sci. Ecole Norm. Super. Sér. 3, 27 (1910), 109–192 | MR | Zbl

[7] Gardner R.B., The method of equivalence and its applications, SIAM, Philadelphia, PA, 1989, viii+127 pp. | MR

[8] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | MR

[9] Nurowski P., “Differential equations and conformal structures”, J. Geom. and Phys., 55 (2005), 19–49 | DOI | MR | Zbl

[10] Springer T.A., Veldkamp F.D., Octonions, Jordan algebras and exceptional groups, Springer, Berlin, 2000, viii+208 pp. | MR | Zbl

[11] Zelenko I., “On variational approach to differential invariants of rank two distributions”, Diff. Geom. and Appl., 24:3 (2006), 235–259 | DOI | MR | Zbl