Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2007_256_a3, author = {J.-P. Gauthier and V. M. Zakalyukin}, title = {Entropy {Estimations} for {Motion} {Planning} {Problems} in {Robotics}}, journal = {Informatics and Automation}, pages = {70--88}, publisher = {mathdoc}, volume = {256}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a3/} }
J.-P. Gauthier; V. M. Zakalyukin. Entropy Estimations for Motion Planning Problems in Robotics. Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 70-88. http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a3/
[1] Gauthier J.-P., Zakalyukin V., “On the codimension one motion planning problem”, J. Dyn. and Control Syst., 11:1 (2005), 73–89 | DOI | MR | Zbl
[2] Gauthier J.-P., Zakalyukin V., “On the one-step-bracket-generating motion planning problem”, J. Dyn. and Control Syst., 11:2 (2005), 215–235 | DOI | MR | Zbl
[3] Gote Zh.P., Zakalyukin V.M., “Programmnoe dvizhenie robota: neregulyarnyi sluchai”, Tr. MIAN, 250, 2005, 64–78 | Zbl
[4] Gauthier J.-P., Zakalyukin V., “On the motion planning problem, complexity, entropy, and nonholonomic interpolation”, J. Dyn. and Control Syst., 12:3 (2006), 371–404 | DOI | MR | Zbl
[5] Gauthier J.P., Zakalyukin V.M., “Nonholonomic interpolation: A general methodology for motion planning in robotics”, Proc. MTNS 2006 Conf. (Kyoto, Japan, July 2006) (to appear)
[6] Agrachev A.A., Chakir El-H.El-A., Gauthier J.P., “Sub-Riemannian metrics on $\mathbb R^3$”, Geometric control and non-holonomic mechanics, Proc. Conf. (Mexico City, 1996), Canad. Math. Soc. Conf. Proc., 25, Amer. Math. Soc., Providence (RI), 1998, 29–76 | MR
[7] Agrachev A.A., Gote Zh.P.A., “Subrimanovy metriki i izoperimetricheskie zadachi v kontaktnom sluchae”, Tr. Mezhdunar. konf., posv. 90-letiyu L.S. Pontryagina. T. 3: Geometricheskaya teoriya upravleniya, Itogi nauki i tekhniki. Sovr. matematika i ee pril. Tematich. obzory, 64, VINITI, M., 1999, 5–48 ; J. Math. Sci., 103:6 (2001), 639–663 | MR | Zbl | DOI | Zbl
[8] Charlot G., “Quasi-contact S-R metrics: Normal form in $\mathbb R^{2n}$, wave front and caustic in $\mathbb R^4$”, Acta appl. math., 74:3 (2002), 217–263 | DOI | MR | Zbl
[9] Chakir El-H.El-A., Gauthier J.-P., Kupka I., “Small sub-Riemannian balls on $\mathbb R^3$”, J. Dyn. and Control Syst., 2:3 (1996), 359–421 | DOI | MR | Zbl
[10] Romero-Meléndez C., Gauthier J.P., Monroy-Pérez F., “On complexity and motion planning for co-rank one sub-Riemannian metrics”, ESAIM Control Optim. and Calc. Var., 10 (2004), 634–655 | DOI | MR | Zbl
[11] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[12] Jean F., “Complexity of nonholonomic motion planning”, Intern. J. Control., 74:8 (2001), 776–782 | DOI | MR | Zbl
[13] Jean F., “Entropy and complexity of a path in sub-Riemannian geometry”, ESAIM Control Optim. and Calc. Var., 9 (2003), 485–506 | MR
[14] Falbel E., Jean F., “Measures of transverse paths in sub-Riemannian geometry”, J. Anal. Math., 91 (2003), 231–246 | DOI | MR | Zbl
[15] Laumond J.P., Sekhavat S., Lamiraux F., “Guidelines in nonholonomic motion planning for mobile robots”, Robot motion planning and control, Lect. Notes Control and Inform. Sci., 229, Springer, Berlin, 1998, 1–53 | MR