Bifurcations of Morse--Smale Diffeomorphisms with Wildly Embedded Separatrices
Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 54-69

Voir la notice de l'article provenant de la source Math-Net.Ru

We study bifurcations of Morse–Smale diffeomorphisms under a change of the embedding of the separatrices of saddle periodic points in the ambient 3-manifold. The results obtained are based on the following statement proved in this paper: for the 3-sphere, the space of diffeomorphisms of North Pole–South Pole type endowed with the $C^1$ topology is connected. This statement is shown to be false in dimension 6.
@article{TRSPY_2007_256_a2,
     author = {C. Bonatti and V. Z. Grines and V. S. Medvedev and O. V. Pochinka},
     title = {Bifurcations of {Morse--Smale} {Diffeomorphisms} with {Wildly} {Embedded} {Separatrices}},
     journal = {Informatics and Automation},
     pages = {54--69},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a2/}
}
TY  - JOUR
AU  - C. Bonatti
AU  - V. Z. Grines
AU  - V. S. Medvedev
AU  - O. V. Pochinka
TI  - Bifurcations of Morse--Smale Diffeomorphisms with Wildly Embedded Separatrices
JO  - Informatics and Automation
PY  - 2007
SP  - 54
EP  - 69
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a2/
LA  - ru
ID  - TRSPY_2007_256_a2
ER  - 
%0 Journal Article
%A C. Bonatti
%A V. Z. Grines
%A V. S. Medvedev
%A O. V. Pochinka
%T Bifurcations of Morse--Smale Diffeomorphisms with Wildly Embedded Separatrices
%J Informatics and Automation
%D 2007
%P 54-69
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a2/
%G ru
%F TRSPY_2007_256_a2
C. Bonatti; V. Z. Grines; V. S. Medvedev; O. V. Pochinka. Bifurcations of Morse--Smale Diffeomorphisms with Wildly Embedded Separatrices. Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 54-69. http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a2/