$C^0$ Transversality and Shadowing Properties
Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 305-319

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be an Axiom A diffeomorphism of a closed smooth two-dimensional manifold. It is shown that the following statements are equivalent: (a) $f$ satisfies the $C^0$ transversality condition, (b) $f$ has the shadowing property, and (c) $f$ has the inverse shadowing property with respect to a class of continuous methods.
@article{TRSPY_2007_256_a16,
     author = {S. Yu. Pilyugin and K. Sakai},
     title = {$C^0$ {Transversality} and {Shadowing} {Properties}},
     journal = {Informatics and Automation},
     pages = {305--319},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a16/}
}
TY  - JOUR
AU  - S. Yu. Pilyugin
AU  - K. Sakai
TI  - $C^0$ Transversality and Shadowing Properties
JO  - Informatics and Automation
PY  - 2007
SP  - 305
EP  - 319
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a16/
LA  - en
ID  - TRSPY_2007_256_a16
ER  - 
%0 Journal Article
%A S. Yu. Pilyugin
%A K. Sakai
%T $C^0$ Transversality and Shadowing Properties
%J Informatics and Automation
%D 2007
%P 305-319
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a16/
%G en
%F TRSPY_2007_256_a16
S. Yu. Pilyugin; K. Sakai. $C^0$ Transversality and Shadowing Properties. Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 305-319. http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a16/