$C^0$ Transversality and Shadowing Properties
Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 305-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be an Axiom A diffeomorphism of a closed smooth two-dimensional manifold. It is shown that the following statements are equivalent: (a) $f$ satisfies the $C^0$ transversality condition, (b) $f$ has the shadowing property, and (c) $f$ has the inverse shadowing property with respect to a class of continuous methods.
@article{TRSPY_2007_256_a16,
     author = {S. Yu. Pilyugin and K. Sakai},
     title = {$C^0$ {Transversality} and {Shadowing} {Properties}},
     journal = {Informatics and Automation},
     pages = {305--319},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a16/}
}
TY  - JOUR
AU  - S. Yu. Pilyugin
AU  - K. Sakai
TI  - $C^0$ Transversality and Shadowing Properties
JO  - Informatics and Automation
PY  - 2007
SP  - 305
EP  - 319
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a16/
LA  - en
ID  - TRSPY_2007_256_a16
ER  - 
%0 Journal Article
%A S. Yu. Pilyugin
%A K. Sakai
%T $C^0$ Transversality and Shadowing Properties
%J Informatics and Automation
%D 2007
%P 305-319
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a16/
%G en
%F TRSPY_2007_256_a16
S. Yu. Pilyugin; K. Sakai. $C^0$ Transversality and Shadowing Properties. Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 305-319. http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a16/

[1] Anosov D.V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Tr. 5-i Mezhdunar. konf. po nelineinym kolebaniyam, t. 2, In-t mat. AN USSR, Kiev, 1970, 39–45

[2] Bowen R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes Math., 470, Springer, Berlin etc., 1975 | MR | Zbl

[3] Pilyugin S.Yu., Shadowing in dynamical systems, Lect. Notes Math., 1706, Springer, Berlin etc., 1999 | MR | Zbl

[4] Palmer K., Shadowing in dynamical systems: Theory and applications, Kluwer, Dordrecht, 2000 | MR | Zbl

[5] Robinson C., “Stability theorems and hyperbolicity in dynamical systems”, Rocky Mount. J. Math., 7 (1977), 425–437 | DOI | MR | Zbl

[6] Morimoto A., The method of pseudo-orbit tracing and stability of dynamical systems, Sem. Note, 39, Tokyo Univ., Tokyo, 1979

[7] Sawada K., “Extended $f$-orbits are approximated by orbits”, Nagoya Math. J., 79 (1980), 33–45 | MR | Zbl

[8] Pilyugin S.Yu., “Shadowing in structurally stable flows”, J. Diff. Equat., 140 (1997), 238–265 | DOI | MR | Zbl

[9] Pilyugin S.Yu., “Inverse shadowing by continuous methods”, Discr. and Contin. Dyn. Syst., 8 (2002), 29–38 | DOI | MR | Zbl

[10] Sakai K., “Shadowing property and transversality condition”, Dynamical systems and chaos, v. 1, World Sci., Singapore, 1995, 233–238 | MR | Zbl

[11] Pilyugin S.Yu., Introduction to structurally stable systems of differential equations, Birkhäuser, Basel etc., 1992 | MR | Zbl

[12] de Melo W., “Structural stability of diffeomorphisms on two-manifolds”, Invent. math., 21 (1973), 233–246 | DOI | MR | Zbl

[13] Anosov D.V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR

[14] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR

[15] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR

[16] Palis J., “On the $C^1$ $\Omega $-stability conjecture”, Publ. Math. IHES, 66 (1988), 211–215 | MR | Zbl

[17] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1995 | MR

[18] Birkhoff G.D., Dynamical systems, Amer. Math. Soc., New York, 1927

[19] Pilyugin S.Yu., Sakai K., Tarakanov O.A., “Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing”, Discr. and Contin. Dyn. Syst., 16 (2006), 871–882 | DOI | MR | Zbl