A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points
Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 290-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how ideas originating in the theory of dynamical systems inspire a new approach to numerical integration of functions. Any Lebesgue integral can be approximated by a sequence of integrals with respect to equidistributions, i.e. evenly weighted discrete probability measures concentrated on an equidistributed set. We prove that, in the case where the integrand is real analytic, suitable linear combinations of these equidistributions lead to a significant acceleration in the rate of convergence of the approximate integral. In particular, the rate of convergence is faster than that of any Newton–Cotes rule.
@article{TRSPY_2007_256_a15,
     author = {O. Jenkinson and M. Pollicott},
     title = {A {Dynamical} {Approach} to {Accelerating} {Numerical} {Integration} with {Equidistributed} {Points}},
     journal = {Informatics and Automation},
     pages = {290--304},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a15/}
}
TY  - JOUR
AU  - O. Jenkinson
AU  - M. Pollicott
TI  - A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points
JO  - Informatics and Automation
PY  - 2007
SP  - 290
EP  - 304
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a15/
LA  - en
ID  - TRSPY_2007_256_a15
ER  - 
%0 Journal Article
%A O. Jenkinson
%A M. Pollicott
%T A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points
%J Informatics and Automation
%D 2007
%P 290-304
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a15/
%G en
%F TRSPY_2007_256_a15
O. Jenkinson; M. Pollicott. A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points. Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 290-304. http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a15/

[1] Bandtlow O., Jenkinson O., Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Preprint http://www.maths.qmul.ac.uk/~omj

[2] Cowen C.C., MacCluer B.D., Composition operators on spaces of analytic functions, CRC Press, Boca Raton (FL), 1995 | MR | Zbl

[3] Gohberg I., Goldberg S., Kaashoek M.A., Classes of linear operators, v. 1, Birkhäuser, Basel, 1990 | MR

[4] Jenkinson O., Pollicott M., “Orthonormal expansions of invariant densities for expanding maps”, Adv. Math., 192 (2005), 1–34 | DOI | MR | Zbl

[5] Kato T., Perturbation theory for linear operators, Grundl. Math. Wiss., 132, Springer, Berlin etc., 1966 | Zbl

[6] Lubotzky A., Phillips R., Sarnak P., “Hecke operators and distributing points on the sphere. I”, Commun. Pure and Appl. Math., 39, Suppl. (1986), S149–S186 | DOI | MR | Zbl

[7] Mayer D.H., “On a $\zeta$ function related to the continued fraction transformation”, Bull. Soc. math. France, 104 (1976), 195–203 | MR | Zbl

[8] Pietsch A., Eigenvalues and $s$-numbers, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[9] Pinkus A., $n$-Widths in approximation theory, Springer, Berlin, 1985 | MR

[10] Ruelle D., “An extension of the theory of Fredholm determinants”, Publ. Math. IHES, 72 (1990), 175–193 | MR | Zbl

[11] Simon B., Trace ideals and their applications, LMS Lect. Note Ser., 35, Cambridge Univ. Press, Cambridge, 1979 | MR | Zbl

[12] Spivak M., A comprehensive introduction to differential geometry, 2nd ed., Publish or Perish, Berkeley, 1979

[13] Stoer J., Bulirsch R., Introduction to numerical analysis, 2nd ed., Springer, New York, 1993 | MR