An Additive Cohomological Equation and Typical Behavior of Birkhoff Sums over a~Translation of the Multidimensional Torus
Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 278-289

Voir la notice de l'article provenant de la source Math-Net.Ru

For a periodic function $f$ with a given decrease of the moduli of its Fourier coefficients, we analyze the solvability of the equation $w(T_\alpha x)-w(x)=f(x)-\int_{\mathbb T^d}f(t)\,dt$ and the asymptotic behavior of the Birkhoff sums $\sum _{s=0}^{n-1} f(T^s_\alpha x)$ for almost every $\alpha$. The results obtained are applied to the study of ergodic properties of a cylindrical cascade and of a special flow on the torus.
@article{TRSPY_2007_256_a14,
     author = {A. V. Rozhdestvenskii},
     title = {An {Additive} {Cohomological} {Equation} and {Typical} {Behavior} of {Birkhoff} {Sums} over {a~Translation} of the {Multidimensional} {Torus}},
     journal = {Informatics and Automation},
     pages = {278--289},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a14/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - An Additive Cohomological Equation and Typical Behavior of Birkhoff Sums over a~Translation of the Multidimensional Torus
JO  - Informatics and Automation
PY  - 2007
SP  - 278
EP  - 289
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a14/
LA  - ru
ID  - TRSPY_2007_256_a14
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T An Additive Cohomological Equation and Typical Behavior of Birkhoff Sums over a~Translation of the Multidimensional Torus
%J Informatics and Automation
%D 2007
%P 278-289
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a14/
%G ru
%F TRSPY_2007_256_a14
A. V. Rozhdestvenskii. An Additive Cohomological Equation and Typical Behavior of Birkhoff Sums over a~Translation of the Multidimensional Torus. Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 278-289. http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a14/