On the Stability of the Index of Unbounded Nonlocal Operators in Sobolev Spaces
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 116-135

Voir la notice de l'article provenant de la source Math-Net.Ru

Unbounded operators corresponding to nonlocal elliptic problems on a bounded region $G\subset\mathbb R^2$ are considered. The domain of these operators consists of functions in the Sobolev space $W_2^m(G)$ that are generalized solutions of the corresponding elliptic equation of order $2m$ with the right-hand side in $L_2(G)$ and satisfy homogeneous nonlocal boundary conditions. It is known that such unbounded operators have the Fredholm property. It is proved that lower order terms in the differential equation do not affect the index of the operator. Conditions under which nonlocal perturbations on the boundary do not change the index are also formulated.
@article{TRSPY_2006_255_a8,
     author = {P. L. Gurevich},
     title = {On the {Stability} of the {Index} of {Unbounded} {Nonlocal} {Operators} in {Sobolev} {Spaces}},
     journal = {Informatics and Automation},
     pages = {116--135},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a8/}
}
TY  - JOUR
AU  - P. L. Gurevich
TI  - On the Stability of the Index of Unbounded Nonlocal Operators in Sobolev Spaces
JO  - Informatics and Automation
PY  - 2006
SP  - 116
EP  - 135
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a8/
LA  - ru
ID  - TRSPY_2006_255_a8
ER  - 
%0 Journal Article
%A P. L. Gurevich
%T On the Stability of the Index of Unbounded Nonlocal Operators in Sobolev Spaces
%J Informatics and Automation
%D 2006
%P 116-135
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a8/
%G ru
%F TRSPY_2006_255_a8
P. L. Gurevich. On the Stability of the Index of Unbounded Nonlocal Operators in Sobolev Spaces. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 116-135. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a8/