On the Stability of the Index of Unbounded Nonlocal Operators in Sobolev Spaces
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 116-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

Unbounded operators corresponding to nonlocal elliptic problems on a bounded region $G\subset\mathbb R^2$ are considered. The domain of these operators consists of functions in the Sobolev space $W_2^m(G)$ that are generalized solutions of the corresponding elliptic equation of order $2m$ with the right-hand side in $L_2(G)$ and satisfy homogeneous nonlocal boundary conditions. It is known that such unbounded operators have the Fredholm property. It is proved that lower order terms in the differential equation do not affect the index of the operator. Conditions under which nonlocal perturbations on the boundary do not change the index are also formulated.
@article{TRSPY_2006_255_a8,
     author = {P. L. Gurevich},
     title = {On the {Stability} of the {Index} of {Unbounded} {Nonlocal} {Operators} in {Sobolev} {Spaces}},
     journal = {Informatics and Automation},
     pages = {116--135},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a8/}
}
TY  - JOUR
AU  - P. L. Gurevich
TI  - On the Stability of the Index of Unbounded Nonlocal Operators in Sobolev Spaces
JO  - Informatics and Automation
PY  - 2006
SP  - 116
EP  - 135
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a8/
LA  - ru
ID  - TRSPY_2006_255_a8
ER  - 
%0 Journal Article
%A P. L. Gurevich
%T On the Stability of the Index of Unbounded Nonlocal Operators in Sobolev Spaces
%J Informatics and Automation
%D 2006
%P 116-135
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a8/
%G ru
%F TRSPY_2006_255_a8
P. L. Gurevich. On the Stability of the Index of Unbounded Nonlocal Operators in Sobolev Spaces. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 116-135. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a8/

[1] Bitsadze A.V., Samarskii A.A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl

[2] Gokhberg I.Ts., Sigal E.I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Mat. sb., 84:4 (1971), 607–629 | MR | Zbl

[3] Gurevich P.L., “Obobschennye resheniya nelokalnykh ellipticheskikh zadach”, Mat. zametki, 77:5 (2005), 665–682 | MR | Zbl

[4] Guschin A.K., “Uslovie kompaktnosti odnogo klassa operatorov i ego primenenie k issledovaniyu razreshimosti nelokalnykh zadach dlya ellipticheskikh uravnenii”, Mat. sb., 193:5 (2002), 17–36 | MR | Zbl

[5] Guschin A.K., Mikhailov V.P., “O razreshimosti nelokalnykh zadach dlya ellipticheskikh uravnenii vtorogo poryadka”, Mat. sb., 185:1 (1994), 121–160 | Zbl

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[7] Kondratev V.A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16 (1967), 209–292

[8] Krein S.G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | MR

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[10] Skubachevskii A.L., “Ellipticheskie zadachi s nelokalnymi usloviyami vblizi granitsy”, Mat. sb., 129:2 (1986), 279–302 | MR

[11] Skubachevskii A.L., “Modelnye nelokalnye zadachi dlya ellipticheskikh uravnenii v dvugrannykh uglakh”, Dif. uravneniya, 26:1 (1990), 120–131 | MR

[12] Skubachevskii A.L., “O metode srezayuschikh funktsii v teorii nelokalnykh zadach”, Dif. uravneniya, 27:1 (1991), 128–139 | MR

[13] Tamarkin Ya.D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Petrograd, 1917 | Zbl

[14] Gurevich P.L., “Solvability of nonlocal elliptic problems in Sobolev spaces. I”, Russ. J. Math. Phys., 10:4 (2003), 436–466 | MR | Zbl

[15] Gurevich P.L., “Solvability of nonlocal elliptic problems in Sobolev spaces. II”, Russ. J. Math. Phys., 11:1 (2004), 1–44 | MR | Zbl

[16] Picone M., “Equazione integrale traducente il più generale problema lineare per le equazioni differenziali lineari ordinarie di qualsivoglia ordine”, Atti Accad. Naz. Lincei., 15 (1932), 942–948 | Zbl

[17] Skubachevskii A.L., “On the stability of index of nonlocal elliptic problems”, J. Math. Anal. and Appl., 160:2 (1991), 323–341 | DOI | MR | Zbl

[18] Skubachevskii A.L., Elliptic functional differential equations and applications, Birkhäuser, Basel; Boston; Berlin, 1997 | MR | Zbl

[19] Sommerfeld A., “Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flussigkeitsbewegungen”, Proc. Intern. Congr. Math., vol. 3 (Rome, 1908), Reale Accad. Lincei, Rome, 1909, 116–124