Local Convergence in Measure on Semifinite von Neumann Algebras
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 41-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathcal M$ is a von Neumann algebra of operators on a Hilbert space $\mathcal H$ and $\tau $ is a faithful normal semifinite trace on $\mathcal M$. The set $\widetilde {\mathcal M}$ of all $\tau $-measurable operators with the topology $t_{\tau }$ of convergence in measure is a topological $*$-algebra. The topologies of $\tau $-local and weakly $\tau $-local convergence in measure are obtained by localizing $t_{\tau }$ and are denoted by $t_{\tau \mathrm l}$ and $t_{\mathrm w\tau \mathrm l}$, respectively. The set $\widetilde {\mathcal M}$ with any of these topologies is a topological vector space. The continuity of certain operations and the closedness of certain classes of operators in $\widetilde {\mathcal M}$ with respect to the topologies $t_{\tau \mathrm l}$ and $t_{\mathrm w\tau \mathrm l}$ are proved. S.M. Nikol'skii's theorem (1943) is extended from the algebra $\mathcal B(\mathcal H)$ to semifinite von Neumann algebras. The following theorem is proved: {\itshape For a von Neumann algebra $\mathcal M$ with a faithful normal semifinite trace $\tau $, the following conditions are equivalent\textup : \textup {(i)} the algebra $\mathcal M$ is finite\textup ; \textup {(ii)} $t_{\mathrm w\tau \mathrm l}= t_{\tau \mathrm l}$\textup ; \textup {(iii)} the multiplication is jointly $t_{\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}\times \widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$\textup ; \textup {(iv)} the multiplication is jointly $t_{\mathrm w\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}\times \widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$\textup ; \textup {(v)} the involution is $t_{\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$.}
@article{TRSPY_2006_255_a3,
     author = {A. M. Bikchentaev},
     title = {Local {Convergence} in {Measure} on {Semifinite} von {Neumann} {Algebras}},
     journal = {Informatics and Automation},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a3/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Local Convergence in Measure on Semifinite von Neumann Algebras
JO  - Informatics and Automation
PY  - 2006
SP  - 41
EP  - 54
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a3/
LA  - ru
ID  - TRSPY_2006_255_a3
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Local Convergence in Measure on Semifinite von Neumann Algebras
%J Informatics and Automation
%D 2006
%P 41-54
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a3/
%G ru
%F TRSPY_2006_255_a3
A. M. Bikchentaev. Local Convergence in Measure on Semifinite von Neumann Algebras. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 41-54. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a3/