Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2006_255_a19, author = {V. N. Temlyakov}, title = {On {Universal} {Estimators} in {Learning} {Theory}}, journal = {Informatics and Automation}, pages = {256--272}, publisher = {mathdoc}, volume = {255}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a19/} }
V. N. Temlyakov. On Universal Estimators in Learning Theory. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 256-272. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a19/
[1] Barron A.R., “Universal approximation bounds for superposition of $n$ sigmoidal functions”, IEEE Trans. Inform. Theory, 39:3 (1993), 930–945 | DOI | MR | Zbl
[2] Binev P., Cohen A., Dahmen W., DeVore R., Temlyakov V., “Universal algorithms for learning theory. Pt. I: Piecewise constant functions”, J. Mach. Learn. Res., 6 (2005), 1297–1321 | MR
[3] Carl B., “Entropy numbers, $s$-numbers, and eigenvalue problems”, J. Funct. Anal., 41 (1981), 290–306 | DOI | MR | Zbl
[4] Barron A., Cohen A., Dahmen W., DeVore R., Approximation and learning by greedy algorithms, Manuscript, 2005, 27 pp.; http://www.ann.jussieu.fr/c̃ohen/greedy.pdf.gz
[5] Cucker F., Smale S., “On the mathematical foundations of learning”, Bull. Amer. Math. Soc., 39 (2002), 1–49 | DOI | MR | Zbl
[6] DeVore R., Kerkyacharian G., Picard D., Temlyakov V., On mathematical methods of learning, Industr. Math. Inst. Res. Repts. N 10, Univ. South Carolina, Columbia, 2004, 24 pp. | MR
[7] DeVore R., Kerkyacharian G., Picard D., Temlyakov V., Mathematical methods for supervised learning, Industr. Math. Inst. Res. Repts. N 22, Univ. South Carolina, Columbia, 2004, 51 pp.
[8] Györfi L., Kohler M., Krzyzak A., Walk H., A distribution-free theory of nonparametric regression, Springer, Berlin, 2002 | MR
[9] DeVore R.A., Temlyakov V.N., “Some remarks on greedy algorithms”, Adv. Comput. Math., 5 (1996), 173–187 | DOI | MR | Zbl
[10] Huber P.J., “Projection pursuit”, Ann. Statist., 13 (1985), 435–525 | DOI | MR | Zbl
[11] Jones L., “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15 (1987), 880–882 | DOI | MR | Zbl
[12] Kerkyacharian G., Picard D., Thresholding in learning theory, math.ST/0510271 | MR
[13] Konyagin S.V., Temlyakov V.N., The entropy in the learning theory. Error estimates, Industr. Math. Inst. Res. Repts. N 09, Univ. South Carolina, Columbia, 2004, 25 pp. | MR
[14] Lee W.S., Bartlett P.L., Williamson R.C., “Efficient agnostic learning of neural networks with bounded fan-in”, IEEE Trans. Inform. Theory, 42:6 (1996), 2118–2132 | DOI | MR | Zbl
[15] Lee W.S., Bartlett P.L., Williamson R.C., “The importance of convexity in learning with squared loss”, IEEE Trans. Inform. Theory, 44:5 (1998), 1974–1980 | DOI | MR | Zbl
[16] Schmidt E., “Zur Theorie der linearen und nichtlinearen Integralgleichungen. I”, Math. Ann., 63 (1906–1907), 433–476 | DOI | MR
[17] Smale S., Zhou D.-X., Learning theory estimates via integral operators and their approximations, Manuscript, 2005, 20 pp.; http://www.tti-c.org/smale_ papers/sampIII5412.pdf
[18] Temlyakov V.N., Optimal estimators in learning theory, Industr. Math. Inst. Res. Repts. N 23, Univ. South Carolina, Columbia, 2004, 29 pp.
[19] Temlyakov V.N., Approximation in learning theory, Industr. Math. Inst. Res. Repts. N 05, Univ. South Carolina, Columbia, 2005, 42 pp.
[20] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3 (2003), 33–107 | DOI | MR | Zbl
[21] Temlyakov V.N., “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14 (2001), 277–292 | DOI | MR | Zbl