On Elliptic Equations and Systems with Critical Growth in Dimension Two
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 246-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear elliptic equations of the form $-\Delta u=g(u)$ in $\Omega$, $u=0$ on $\partial\Omega$, and Hamiltonian-type systems of the form $-\Delta u=g(v)$ in $\Omega$, $-\Delta v=f(u)$ in $\Omega$, $u=0$ and $v=0$ on $\partial\Omega$, where $\Omega$ is a bounded domain in $\mathbb R^2$ and $f,g\in C(\mathbb R)$ are superlinear nonlinearities. In two dimensions the maximal growth ($={}$critical growth) of $f$ and $g$ (such that the problem can be treated variationally) is of exponential type, given by Pohozaev–Trudinger-type inequalities. We discuss existence and nonexistence results related to the critical growth for the equation and the system. A natural framework for such equations and systems is given by Sobolev spaces, which provide in most cases an adequate answer concerning the maximal growth involved. However, we will see that for the system in dimension $2$, the Sobolev embeddings are not sufficiently fine to capture the true maximal growths. We will show that working in Lorentz spaces gives better results.
@article{TRSPY_2006_255_a18,
     author = {B. Ruf},
     title = {On {Elliptic} {Equations} and {Systems} with {Critical} {Growth} in {Dimension} {Two}},
     journal = {Informatics and Automation},
     pages = {246--255},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a18/}
}
TY  - JOUR
AU  - B. Ruf
TI  - On Elliptic Equations and Systems with Critical Growth in Dimension Two
JO  - Informatics and Automation
PY  - 2006
SP  - 246
EP  - 255
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a18/
LA  - en
ID  - TRSPY_2006_255_a18
ER  - 
%0 Journal Article
%A B. Ruf
%T On Elliptic Equations and Systems with Critical Growth in Dimension Two
%J Informatics and Automation
%D 2006
%P 246-255
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a18/
%G en
%F TRSPY_2006_255_a18
B. Ruf. On Elliptic Equations and Systems with Critical Growth in Dimension Two. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 246-255. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a18/

[1] Adams R.A., Fournier J.J.F., Sobolev spaces, 2nd ed., Acad. Press, New York, 2003 | MR | Zbl

[2] Adimurthi., “Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian”, Ann. Scuola Norm. Super. Pisa., 17 (1990), 393–413 | MR | Zbl

[3] Ambrosetti A., Rabinowitz P.H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14 (1973), 349–381 | DOI | MR | Zbl

[4] Adimurthi, Yadava S.L., “Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb R^2$ involving critical exponent”, Ann. Scuola Norm. Super. Pisa., 17 (1990), 481–504 | MR | Zbl

[5] Brezis H., “Laser beams and limiting cases of Sobolev inequalities”, Nonlinear partial differential equations and their applications, Collège de France Seminar. V. 2, Pitman Res. Notes Math., 60, eds. H. Brezis, J.L. Lions, Pitman, Boston, 1982, 86–97 | MR

[6] Brezis H., Nirenberg L., “Positive solutions of nonlinear elliptic problems involving critical Sobolev exponents”, Commun. Pure and Appl. Math., 36 (1983), 437–477 | DOI | MR | Zbl

[7] Brezis H., Wainger S., “A note on limiting cases of Sobolev embeddings and convolution inequalities”, Commun. Part. Diff. Equat., 5 (1980), 773–789 | DOI | MR | Zbl

[8] Carleson L., Chang S.-Y.A., “On the existence of an extremal function for an inequality of J. Moser”, Bull. sci. math. Sér. 2, 110 (1986), 113–127 | MR | Zbl

[9] de Figueiredo D.G., Felmer P.L., “On superquadratic elliptic systems”, Trans. Amer. Math. Soc., 343 (1994), 99–116 | DOI | MR | Zbl

[10] de Figueiredo D.G., do Ó J.M., Ruf B., “On an inequality by N. Trudinger and J. Moser and related elliptic equations”, Commun. Pure and Appl. Math., 55 (2002), 135–152 | DOI | MR | Zbl

[11] de Figueiredo D.G., do Ó J.M., Ruf B., “Critical and subcritical elliptic systems in dimension two”, Indiana Univ. Math. J., 53 (2004), 1037–1054 | DOI | MR | Zbl

[12] de Figueiredo D.G., do Ó J.M., Ruf B., “An Orlicz-space approach to superlinear elliptic systems”, J. Funct. Anal., 224 (2005), 471–496 | DOI | MR | Zbl

[13] de Figueiredo D.G., Ruf B., “Existence and nonexistence of solutions for elliptic equations with critical growth in $\mathbb R^2$”, Commun. Pure and Appl. Math., 48 (1995), 639–655 | DOI | MR | Zbl

[14] de Figueiredo D.G., Miyagaki O.H., Ruf B., “Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range”, Calc. Var. and Part. Diff. Equat., 3 (1995), 139–153 | DOI | MR | Zbl

[15] Flucher M., “Extremal functions for the Trudinger–Moser inequality in 2 dimensions”, Comment. Math. Helv., 67 (1992), 471–497 | DOI | MR | Zbl

[16] Gidas B., Ni W.N., Nirenberg L., “Symmetry and related properties via the maximum principle”, Commun. Math. Phys., 68 (1979), 209–243 | DOI | MR | Zbl

[17] Hulshof J., van der Vorst R., “Differential systems with strongly indefinite variational structure”, J. Funct. Anal., 114 (1993), 32–58 | DOI | MR | Zbl

[18] Lions P.-L., “The concentration–compactness principle in the calculus of variations. The limit case. I”, Rev. Mat. Iberoamer., 1 (1985), 145–201 | MR | Zbl

[19] Moser J., “A sharp form of an inequality by Trudinger”, Indiana Univ. Math. J., 20 (1971), 1077–1092 | DOI | MR

[20] Pokhozhaev S.I., “O teoreme vlozheniya Soboleva v sluchae $pl=n$”, Dokl. nauch.-tekhn. konf. MEI. Sekts. mat., Izd. MEI, M., 1965, 158–170

[21] Pokhozhaev S.I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | MR | Zbl

[22] Rabinowitz P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, Amer. Math. Soc., Providence (RI), 1986 | MR

[23] Strichartz R.S., “A note on Trudinger's extension of Sobolev's inequalities”, Indiana Univ. Math. J., 21 (1972), 841–842 | DOI | MR | Zbl

[24] Talenti G., “Best constants in Sobolev inequality”, Ann. Mat. Pura ed Appl., 110 (1976), 353–372 | DOI | MR | Zbl

[25] Trudinger N.S., “On imbeddings into Orlicz spaces and some applications”, J. Math. and Mech., 17 (1967), 473–483 | MR | Zbl