Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 227-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $C_A$ the set of functions that are analytic in the disk $|z|1$ and continuous on its closure $|z|\le 1$; let $\mathcal {R}_n$, $n=0,1,2,\dots$, be the set of rational functions of degree at most $n$. Denote by $R_n(f)$ ($R_n(f)_A$) the best uniform approximation of a function $f\in C_A$ on the circle $|z|=1$ (in the disk $|z|\le 1$) by the set $\mathcal {R}_n$. The following equality is proved for any $n\ge 1$: $\sup \{R_n(f)_A/R_n(f)\colon f\in C_A\setminus \mathcal {R}_n\}=2$. We also consider a similar problem of comparing the best approximations of functions in $C_A$ by polynomials and trigonometric polynomials.
@article{TRSPY_2006_255_a16,
     author = {A. A. Pekarskii},
     title = {Comparison of the {Best} {Uniform} {Approximations} of {Analytic} {Functions} in the {Disk} and on {Its} {Boundary}},
     journal = {Informatics and Automation},
     pages = {227--232},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a16/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary
JO  - Informatics and Automation
PY  - 2006
SP  - 227
EP  - 232
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a16/
LA  - ru
ID  - TRSPY_2006_255_a16
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary
%J Informatics and Automation
%D 2006
%P 227-232
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a16/
%G ru
%F TRSPY_2006_255_a16
A. A. Pekarskii. Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 227-232. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a16/

[1] Gakhov F.D., Feschiev I.Kh., “Interpolyatsiya singulyarnykh integralov i priblizhennoe reshenie zadachi Rimana”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, no. 5, 1982, 3–13 | MR | Zbl

[2] Gonchar A.A., Grigoryan L.D., “Ob otsenkakh normy golomorfnykh sostavlyayuschikh meromorfnoi funktsii”, Mat. sb., 99:4 (1976), 634–638 | MR | Zbl

[3] Grigoryan L.D., “Otsenki normy golomorfnykh sostavlyayuschikh meromorfnykh funktsii v oblastyakh s gladkoi granitsei”, Mat. sb., 100:1 (1976), 156–164 | MR | Zbl

[4] Pekarskii A.A., “Otsenki proizvodnoi integrala tipa Koshi s meromorfnoi plotnostyu i ikh prilozheniya”, Mat. zametki, 31:3 (1982), 389–402 | MR | Zbl

[5] Lorentz G.G., Golitschek M.V., Makovoz Y., Constructive approximation. Advanced problems, Springer, Berlin, 1996 | MR

[6] Dzyadyk V.K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[7] Levin A.L., “Priblizheniya ratsionalnymi funktsiyami v kompleksnoi oblasti”, Mat. zametki, 9:2 (1971), 121–130 | MR | Zbl

[8] Rusak V.N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979 | MR

[9] Pekarskii A.A., “Ratsionalnye i kusochno polinomialnye priblizheniya v prostranstvakh $L_p$ i $H_p$”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2000, no. 3, 11–16 | MR

[10] Pekarskii A.A., “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh $L_p$, $0

1$, na krivykh Lavrenteva”, Algebra i analiz, 16:3 (2004), 143–170 | MR | Zbl

[11] Davie A.M., Gamelin T.W., Garnett J., “Distance estimates and pointwise bounded density”, Trans. Amer. Math. Soc., 175 (1973), 37–68 | DOI | MR | Zbl