Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 227-232

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $C_A$ the set of functions that are analytic in the disk $|z|1$ and continuous on its closure $|z|\le 1$; let $\mathcal {R}_n$, $n=0,1,2,\dots$, be the set of rational functions of degree at most $n$. Denote by $R_n(f)$ ($R_n(f)_A$) the best uniform approximation of a function $f\in C_A$ on the circle $|z|=1$ (in the disk $|z|\le 1$) by the set $\mathcal {R}_n$. The following equality is proved for any $n\ge 1$: $\sup \{R_n(f)_A/R_n(f)\colon f\in C_A\setminus \mathcal {R}_n\}=2$. We also consider a similar problem of comparing the best approximations of functions in $C_A$ by polynomials and trigonometric polynomials.
@article{TRSPY_2006_255_a16,
     author = {A. A. Pekarskii},
     title = {Comparison of the {Best} {Uniform} {Approximations} of {Analytic} {Functions} in the {Disk} and on {Its} {Boundary}},
     journal = {Informatics and Automation},
     pages = {227--232},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a16/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary
JO  - Informatics and Automation
PY  - 2006
SP  - 227
EP  - 232
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a16/
LA  - ru
ID  - TRSPY_2006_255_a16
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary
%J Informatics and Automation
%D 2006
%P 227-232
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a16/
%G ru
%F TRSPY_2006_255_a16
A. A. Pekarskii. Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 227-232. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a16/