Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 197-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,Y)$ be a pair of normed spaces such that $X\subset Y\subset L_1[0,1]^n$ and $\{e_k\}_k$ be an expanding sequence of finite sets in $\mathbb Z^n$ with respect to a scalar or vector parameter $k$$k\in \mathbb N$ or $k\in \mathbb N^n$. The properties of the sequence of norms $\{\|S_{e_k}(f)\|_X\}_k$ of the Fourier sums of a fixed function $f\in Y$ are studied. As the spaces $X$ and $Y$, the Lebesgue spaces $L_p[0,1]$, the Lorentz spaces $L_{p,q}[0,1]$, $L_{p,q}[0,1]^n$, and the anisotropic Lorentz spaces $L_{\mathbf p,\mathbf q^\star }[0,1]^n$ are considered. In the one-dimensional case, the sequence $\{e_k\}_k$ consists of segments, and in the multidimensional case, it is a sequence of hyperbolic crosses or parallelepipeds in $\mathbb Z^n$. For trigonometric polynomials with the spectrum given by step hyperbolic crosses and parallelepipeds, various types of inequalities for different metrics in the Lorentz spaces $L_{p,q}[0,1]^n$ and $L_{\mathbf p,\mathbf q^\star }[0,1]^n$ are obtained.
@article{TRSPY_2006_255_a14,
     author = {E. D. Nursultanov},
     title = {Nikol'skii's {Inequality} for {Different} {Metrics} and {Properties} of the {Sequence} of {Norms} of the {Fourier} {Sums} of a {Function} in the {Lorentz} {Space}},
     journal = {Informatics and Automation},
     pages = {197--215},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a14/}
}
TY  - JOUR
AU  - E. D. Nursultanov
TI  - Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
JO  - Informatics and Automation
PY  - 2006
SP  - 197
EP  - 215
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a14/
LA  - ru
ID  - TRSPY_2006_255_a14
ER  - 
%0 Journal Article
%A E. D. Nursultanov
%T Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
%J Informatics and Automation
%D 2006
%P 197-215
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a14/
%G ru
%F TRSPY_2006_255_a14
E. D. Nursultanov. Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 197-215. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a14/

[1] Blozinski A.P., “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 149–167 | DOI | MR | Zbl

[2] Nursultanov E.D., “Setevye prostranstva i neravenstva tipa Khardi–Littlvuda”, Mat. sb., 189:3 (1998), 83–102 | MR | Zbl

[3] Nursultanov E.D., “O koeffitsientakh kratnykh ryadov Fure iz $L_p$-prostranstv”, Izv. RAN. Ser. mat., 64:1 (2000), 95–122 | MR | Zbl

[4] Nursultanov E.D., “Interpolyatsionnye teoremy dlya anizotropnykh funktsionalnykh prostranstv i ikh prilozheniya”, DAN, 394:1 (2004), 22–25 | MR | Zbl

[5] Neder L., “Über Koeffizientensumme einer beschrankten Potenzreihe”, Math. Ztschr., 11 (1921), 115–123 | DOI | MR | Zbl

[6] Busko E., “Fonctions continues et fonctions bornees non adherentes dans $L^\infty (T)$ à la suite de leurs sommes partielles de Fourier”, Stud. math., 34 (1970), 319–337 | MR | Zbl

[7] Oskolkov K.I., “Otsenka priblizheniya nepreryvnykh funktsii podposledovatelnostyami summ Fure”, Tr. MIAN, 134, 1975, 240–253 | MR | Zbl

[8] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, 1951, 244–278

[9] Sherstneva L.A., “Neravenstva Nikolskogo dlya trigonometricheskikh polinomov v prostranstvakh Lorentsa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1984, no. 4, 75–79 | MR | Zbl

[10] Temlyakov V.N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986, 113 pp. | MR | Zbl

[11] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva: Vvedenie, Mir, M., 1980 | MR

[12] Polia G., Sege G., Zadachi i teoremy iz analiza, t. 2, Nauka, M., 1978

[13] Rodin V.A., “Teorema Khardi–Littlvuda dlya kosinus-ryada v simmetrichnom prostranstve”, Mat. zametki, 20:2 (1976), 241–246 | MR | Zbl

[14] Nursultanov E.D., “Mnogoparametricheskii interpolyatsionnyi funktor i prostranstvo Lorentsa $L_{p\vec q}$, $\vec q=(q_1,\dots ,q_n)$”, Funkts. anal. i ego pril., 31:2 (1997), 79–82 | MR | Zbl

[15] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[16] Akishev G.A., “Neravenstvo raznykh metrik dlya trigonometricheskikh polinomov v prostranstve Lorentsa”, Ualikhanovskie chteniya–9, Mater. Mezhdunar. nauch.-praktich. konf. (g. Kokshetau, 2004 g.), 3–6