Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 197-215

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,Y)$ be a pair of normed spaces such that $X\subset Y\subset L_1[0,1]^n$ and $\{e_k\}_k$ be an expanding sequence of finite sets in $\mathbb Z^n$ with respect to a scalar or vector parameter $k$$k\in \mathbb N$ or $k\in \mathbb N^n$. The properties of the sequence of norms $\{\|S_{e_k}(f)\|_X\}_k$ of the Fourier sums of a fixed function $f\in Y$ are studied. As the spaces $X$ and $Y$, the Lebesgue spaces $L_p[0,1]$, the Lorentz spaces $L_{p,q}[0,1]$, $L_{p,q}[0,1]^n$, and the anisotropic Lorentz spaces $L_{\mathbf p,\mathbf q^\star }[0,1]^n$ are considered. In the one-dimensional case, the sequence $\{e_k\}_k$ consists of segments, and in the multidimensional case, it is a sequence of hyperbolic crosses or parallelepipeds in $\mathbb Z^n$. For trigonometric polynomials with the spectrum given by step hyperbolic crosses and parallelepipeds, various types of inequalities for different metrics in the Lorentz spaces $L_{p,q}[0,1]^n$ and $L_{\mathbf p,\mathbf q^\star }[0,1]^n$ are obtained.
@article{TRSPY_2006_255_a14,
     author = {E. D. Nursultanov},
     title = {Nikol'skii's {Inequality} for {Different} {Metrics} and {Properties} of the {Sequence} of {Norms} of the {Fourier} {Sums} of a {Function} in the {Lorentz} {Space}},
     journal = {Informatics and Automation},
     pages = {197--215},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a14/}
}
TY  - JOUR
AU  - E. D. Nursultanov
TI  - Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
JO  - Informatics and Automation
PY  - 2006
SP  - 197
EP  - 215
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a14/
LA  - ru
ID  - TRSPY_2006_255_a14
ER  - 
%0 Journal Article
%A E. D. Nursultanov
%T Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
%J Informatics and Automation
%D 2006
%P 197-215
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a14/
%G ru
%F TRSPY_2006_255_a14
E. D. Nursultanov. Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 197-215. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a14/