Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 180-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the limiting case of the Krichever construction of orthogonal curvilinear coordinate systems when the spectral curve becomes singular. We show that when the curve is reducible and all its irreducible components are rational curves, the construction procedure reduces to solving systems of linear equations and to simple computations with elementary functions. We also demonstrate how well-known coordinate systems, such as polar coordinates, cylindrical coordinates, and spherical coordinates in Euclidean spaces, fit in this scheme.
@article{TRSPY_2006_255_a13,
     author = {A. E. Mironov and I. A. Taimanov},
     title = {Orthogonal {Curvilinear} {Coordinate} {Systems} {Corresponding} to {Singular} {Spectral} {Curves}},
     journal = {Informatics and Automation},
     pages = {180--196},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a13/}
}
TY  - JOUR
AU  - A. E. Mironov
AU  - I. A. Taimanov
TI  - Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves
JO  - Informatics and Automation
PY  - 2006
SP  - 180
EP  - 196
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a13/
LA  - ru
ID  - TRSPY_2006_255_a13
ER  - 
%0 Journal Article
%A A. E. Mironov
%A I. A. Taimanov
%T Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves
%J Informatics and Automation
%D 2006
%P 180-196
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a13/
%G ru
%F TRSPY_2006_255_a13
A. E. Mironov; I. A. Taimanov. Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 180-196. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a13/