Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2006_254_a8, author = {Yu. S. Ilyashenko}, title = {Persistence {Theorems} and {Simultaneous} {Uniformization}}, journal = {Informatics and Automation}, pages = {196--214}, publisher = {mathdoc}, volume = {254}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a8/} }
Yu. S. Ilyashenko. Persistence Theorems and Simultaneous Uniformization. Informatics and Automation, Nonlinear analytic differential equations, Tome 254 (2006), pp. 196-214. http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a8/
[1] Bibikov Yu.N., Local theory of nonlinear analytic ordinary differential equations, Lect. Notes Math., 702, Springer, Berlin, 1979 | MR | Zbl
[2] Buzzard G.T., Hruska S.L., Ilyashenko Yu., “Kupka–Smale theorem for polynomial automorphisms of $\mathbb C^2$ and persistence of heteroclinic intersections”, Invent. math., 161 (2005), 45–89 | DOI | MR | Zbl
[3] Collingwood E.F., Lohwater A.J., The theory of cluster sets, Cambridge Tracts Math. and Math. Phys., 56, Cambridge Univ. Press, London, 1966 | MR | Zbl
[4] Glutsyuk A., “Nonuniformizable skew cylinders. A counterexample to the simultaneous uniformization problem”, C. r. Acad. sci. Paris Sér. 1: Math. yr 2001, 332:3, 209–214 | MR | Zbl
[5] Glutsyuk A., “On simultaneous uniformization and local nonuniformizability”, C. r. Acad. sci. Paris Sér. 1: Math., 334:6 (2002), 489–494 | MR | Zbl
[6] Ilyashenko Yu.S., “Sloeniya na analiticheskie krivye”, Mat. sb., 88:4 (1972), 558–577 | Zbl
[7] Ilyashenko Yu.S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. sem. im. I.G. Petrovskogo, 4 (1978), 83–136 | MR | Zbl
[8] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl
[9] Kurant R., Geometricheskaya teoriya funktsii kompleksnoi peremennoi, Gostekhteorizdat, M.; L., 1934
[10] Petrovskii I.G., Landis E.M., “O chisle predelnykh tsiklov uravneniya $dy/dx=P(x,y)/Q(x,y)$, gde $P$ i $Q$ — mnogochleny 2-i stepeni”, Mat. sb., 37:2 (1955), 209–250 | MR | Zbl