A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves
Informatics and Automation, Nonlinear analytic differential equations, Tome 254 (2006), pp. 192-195
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that a generic polynomial vector field of degree higher than $2$ on the plane has countably many complex limit cycles that are homologically independent on the leaves. In the paper, a similar assertion is proved for analytic vector fields on the complex plane. The proof is based on the results of D. S. Volk and T. S. Firsova.
@article{TRSPY_2006_254_a7,
author = {T. I. Golenishcheva-Kutuzova},
title = {A~Generic {Analytic} {Foliation} in~$\mathbb C^2$ {Has} {Infinitely} {Many} {Cylindrical} {Leaves}},
journal = {Informatics and Automation},
pages = {192--195},
publisher = {mathdoc},
volume = {254},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a7/}
}
TY - JOUR AU - T. I. Golenishcheva-Kutuzova TI - A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves JO - Informatics and Automation PY - 2006 SP - 192 EP - 195 VL - 254 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a7/ LA - ru ID - TRSPY_2006_254_a7 ER -
T. I. Golenishcheva-Kutuzova. A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves. Informatics and Automation, Nonlinear analytic differential equations, Tome 254 (2006), pp. 192-195. http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a7/