Unconditional Exponential Bases in Bergman Spaces
Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 88-100

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that unconditional exponential bases cannot be constructed in the Bergman space $B_2(D)$ in the case when $D$ is a bounded convex domain in the plane such that at least at one point of its boundary the curvature exists and is different from zero.
@article{TRSPY_2006_253_a7,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Unconditional {Exponential} {Bases} in {Bergman} {Spaces}},
     journal = {Informatics and Automation},
     pages = {88--100},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a7/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Unconditional Exponential Bases in Bergman Spaces
JO  - Informatics and Automation
PY  - 2006
SP  - 88
EP  - 100
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a7/
LA  - ru
ID  - TRSPY_2006_253_a7
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Unconditional Exponential Bases in Bergman Spaces
%J Informatics and Automation
%D 2006
%P 88-100
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a7/
%G ru
%F TRSPY_2006_253_a7
K. P. Isaev; R. S. Yulmukhametov. Unconditional Exponential Bases in Bergman Spaces. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 88-100. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a7/