Remarks on the Local Version of the Inverse Scattering Method
Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 46-60

Voir la notice de l'article provenant de la source Math-Net.Ru

It is very likely that all local holomorphic solutions of integrable $(1+1)$-dimensional parabolic-type evolution equations can be obtained from the zero solution by formal gauge transformations that belong (as formal power series) to appropriate Gevrey classes. We describe in detail the construction of solutions by means of convergent gauge transformations and prove an assertion converse to the above conjecture; namely, we suggest a simple necessary condition for the existence of a local holomorphic solution to the Cauchy problem for the evolution equations under consideration in terms of scattering data of initial conditions.
@article{TRSPY_2006_253_a3,
     author = {A. V. Domrin},
     title = {Remarks on the {Local} {Version} of the {Inverse} {Scattering} {Method}},
     journal = {Informatics and Automation},
     pages = {46--60},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a3/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Remarks on the Local Version of the Inverse Scattering Method
JO  - Informatics and Automation
PY  - 2006
SP  - 46
EP  - 60
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a3/
LA  - ru
ID  - TRSPY_2006_253_a3
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Remarks on the Local Version of the Inverse Scattering Method
%J Informatics and Automation
%D 2006
%P 46-60
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a3/
%G ru
%F TRSPY_2006_253_a3
A. V. Domrin. Remarks on the Local Version of the Inverse Scattering Method. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 46-60. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a3/