Residual Kernels with Singularities on Coordinate Planes
Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 277-295

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite collection of planes $\{E_\nu \}$ in $\mathbb C^d$ is called an atomic family if the top de Rham cohomology group of its complement is generated by a single element. A closed differential form generating this group is called a residual kernel for the atomic family. We construct new residual kernels in the case when $E_\nu$ are coordinate planes such that the complement $\mathbb C^d\setminus \bigcup E_\nu$ admits a toric action with the orbit space being homeomorphic to a compact projective toric variety. They generalize the well-known Bochner–Martinelli and Sorani differential forms. The kernels obtained are used to establish a new formula of integral representations for functions holomorphic in Reinhardt polyhedra.
@article{TRSPY_2006_253_a20,
     author = {A. V. Shchuplev and A. K. Tsikh and A. Yger},
     title = {Residual {Kernels} with {Singularities} on {Coordinate} {Planes}},
     journal = {Informatics and Automation},
     pages = {277--295},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a20/}
}
TY  - JOUR
AU  - A. V. Shchuplev
AU  - A. K. Tsikh
AU  - A. Yger
TI  - Residual Kernels with Singularities on Coordinate Planes
JO  - Informatics and Automation
PY  - 2006
SP  - 277
EP  - 295
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a20/
LA  - en
ID  - TRSPY_2006_253_a20
ER  - 
%0 Journal Article
%A A. V. Shchuplev
%A A. K. Tsikh
%A A. Yger
%T Residual Kernels with Singularities on Coordinate Planes
%J Informatics and Automation
%D 2006
%P 277-295
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a20/
%G en
%F TRSPY_2006_253_a20
A. V. Shchuplev; A. K. Tsikh; A. Yger. Residual Kernels with Singularities on Coordinate Planes. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 277-295. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a20/