Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2006_253_a17, author = {M. G. Eastwood and V. Ezhov}, title = {Cayley {Hypersurfaces}}, journal = {Informatics and Automation}, pages = {241--244}, publisher = {mathdoc}, volume = {253}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a17/} }
M. G. Eastwood; V. Ezhov. Cayley Hypersurfaces. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 241-244. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a17/
[1] Dillen F., Vrancken L., “Generalized Cayley surfaces”, Global differential geometry and global analysis, Proc. Conf. (Berlin, 1990), Lect. Notes Math., 1481, eds. D. Ferus, U. Pinkall, U. Simon, B. Wegner, Springer, Berlin, 1991, 36–47 | MR
[2] Dillen F., Vrancken L., “Hypersurfaces with parallel difference tensor”, Japan. J. Math., 24 (1998), 43–60 | MR | Zbl
[3] Nomizu K., Sasaki T., Affine differential geometry, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[4] LeichtweißK., “Über eine geometrische Deutung des Affinnormalenvektors einseitig gekrümmter Hyperflächen”, Arch. Math., 53 (1989), 613–621 | DOI | MR | Zbl
[5] Nomizu K., Pinkall U., “Cayley surfaces in affine differential geometry”, Tôhoku Math. J., 41 (1989), 589–596 | DOI | MR | Zbl
[6] Choi Y., Kim H., “A characterization of Cayley hypersurface and Eastwood and Ezhov conjecture”, Intern. J. Math., 16 (2005), 841–862 | DOI | MR | Zbl
[7] Eastwood M., Ezhov V., “Homogeneous hypersurfaces with isotropy in affine four-space”, Tr. MIAN, 235, 2001, 57–70 | MR | Zbl