Cayley Hypersurfaces
Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 241-244

Voir la notice de l'article provenant de la source Math-Net.Ru

We exhibit a family of homogeneous hypersurfaces in affine space, one in each dimension, that generalize the Cayley surface.
@article{TRSPY_2006_253_a17,
     author = {M. G. Eastwood and V. Ezhov},
     title = {Cayley {Hypersurfaces}},
     journal = {Informatics and Automation},
     pages = {241--244},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a17/}
}
TY  - JOUR
AU  - M. G. Eastwood
AU  - V. Ezhov
TI  - Cayley Hypersurfaces
JO  - Informatics and Automation
PY  - 2006
SP  - 241
EP  - 244
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a17/
LA  - en
ID  - TRSPY_2006_253_a17
ER  - 
%0 Journal Article
%A M. G. Eastwood
%A V. Ezhov
%T Cayley Hypersurfaces
%J Informatics and Automation
%D 2006
%P 241-244
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a17/
%G en
%F TRSPY_2006_253_a17
M. G. Eastwood; V. Ezhov. Cayley Hypersurfaces. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 241-244. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a17/