Variations of Hartogs' Theorem
Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 232-240

Voir la notice de l'article provenant de la source Math-Net.Ru

Hartogs' separate analyticity theorem is extended to functions holomorphic along holomorphic curves that form mutually transversal foliations of the domain of definition of these functions.
@article{TRSPY_2006_253_a16,
     author = {E. M. Chirka},
     title = {Variations of {Hartogs'} {Theorem}},
     journal = {Informatics and Automation},
     pages = {232--240},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a16/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Variations of Hartogs' Theorem
JO  - Informatics and Automation
PY  - 2006
SP  - 232
EP  - 240
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a16/
LA  - ru
ID  - TRSPY_2006_253_a16
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Variations of Hartogs' Theorem
%J Informatics and Automation
%D 2006
%P 232-240
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a16/
%G ru
%F TRSPY_2006_253_a16
E. M. Chirka. Variations of Hartogs' Theorem. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 232-240. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a16/