K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 175-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kähler geometry of the universal Teichmüller space and related infinite-dimensional Kähler manifolds is studied. The universal Teichmüller space $\mathcal T$ may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The classical Teichmüller spaces $T(G)$, where $G$ is a Fuchsian group, are contained in $\mathcal T$ as complex Kähler submanifolds. The homogeneous spaces $\text {Diff}_+(S^1)/\text {M\"ob}(S^1)$ and $\text {Diff}_+(S^1)/S^1$ of the diffeomorphism group $\text {Diff}_+(S^1)$ of the unit circle are closely related to $\mathcal T$. They are Kähler Frechet manifolds that can be realized as coadjoint orbits of the Virasoro group (and exhaust all coadjoint orbits of this group that have the Kähler structure).
@article{TRSPY_2006_253_a13,
     author = {A. G. Sergeev},
     title = {K\"ahler {Geometry} of the {Universal} {Teichm\"uller} {Space} and {Coadjoint} {Orbits} of the {Virasoro} {Group}},
     journal = {Informatics and Automation},
     pages = {175--203},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
JO  - Informatics and Automation
PY  - 2006
SP  - 175
EP  - 203
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/
LA  - ru
ID  - TRSPY_2006_253_a13
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
%J Informatics and Automation
%D 2006
%P 175-203
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/
%G ru
%F TRSPY_2006_253_a13
A. G. Sergeev. K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 175-203. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/

[1] Ahlfors L.V., Lectures on quasiconformal mappings, Van Nostrand, Princeton, 1966 ; Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR | Zbl | MR

[2] Bowen R., “Hausdorff dimension of quasicircles”, Publ. Math. IHES, 50 (1979), 259–273 | MR

[3] Douady A., Earle C.J., “Conformally natural extension of homeomorphisms of the circle”, Acta math., 157 (1986), 23–48 | DOI | MR | Zbl

[4] Earle C.J., Eells J., “On the differential geometry of Teichmüller spaces”, J. Anal. Math., 19 (1967), 35–52 | DOI | MR | Zbl

[5] Guieu L., “Nombre de rotation, structures géométriques sur un cercle et groupe de Bott–Virasoro”, Ann. Inst. Fourier, 46 (1996), 971–1009 | MR

[6] Kirillov A.A., “Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments”, Twistor geometry and nonlinear systems (Primorsko (Bulg.), 1980), Lect. Notes Math., 970, Springer, Berlin, 1982, 101–123 | MR

[7] Kirillov A.A., Yurev D.V., “Kelerova geometriya beskonechnomernogo odnorodnogo prostranstva $M=\mathrm{Diff}_+(S^1)/\mathrm{Rot}(S^1)$”, Funkts. anal. i ego pril., 21:4 (1987), 35–46 | MR | Zbl

[8] Lazutkin V.F., Pankratova T.F., “Normalnye formy i versalnye deformatsii dlya uravneniya Khilla”, Funkts. anal. i ego pril., 9:4 (1975), 41–48 | MR | Zbl

[9] Lempert L., “The Virasoro group as a complex manifold”, Math. Res. Lett., 2 (1995), 479–495 | MR | Zbl

[10] Nag S., The complex analytic theory of Teichmüller spaces, J. Wiley and Sons, New York, 1988 | MR

[11] Nag S., “A period mapping in universal Teichmüller space”, Bull. Amer. Math. Soc., 26 (1992), 280–287 | DOI | MR | Zbl

[12] Nag S., Sullivan D., “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32 (1995), 1–34 | MR | Zbl

[13] Nag S., Verjovsky A., “$\mathrm{Diff}(S^1)$ and the Teichmüller spaces”, Commun. Math. Phys., 130 (1990), 123–138 | DOI | MR | Zbl

[14] Pfluger A., “Über die Konstruktion Riemannscher Flächen durch Verhäftung”, J. Indian Math. Soc., 24 (1961), 401–412 | MR | Zbl

[15] Pressley A., Segal G., Loop groups, Clarendon Press, Oxford, 1986 ; Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR | Zbl | MR

[16] Segal G., “Unitary representations of some infinite-dimensional groups”, Commun. Math. Phys., 80 (1981), 301–392 | DOI | MR

[17] Sergeev A.G., Kelerova geometriya prostranstv petel, MTsNMO, M., 2001

[18] Witten E., “Coadjoint orbits of the Virasoro group”, Commun. Math. Phys., 114 (1988), 1–53 | DOI | MR | Zbl