K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 175-203

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kähler geometry of the universal Teichmüller space and related infinite-dimensional Kähler manifolds is studied. The universal Teichmüller space $\mathcal T$ may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The classical Teichmüller spaces $T(G)$, where $G$ is a Fuchsian group, are contained in $\mathcal T$ as complex Kähler submanifolds. The homogeneous spaces $\text {Diff}_+(S^1)/\text {M\"ob}(S^1)$ and $\text {Diff}_+(S^1)/S^1$ of the diffeomorphism group $\text {Diff}_+(S^1)$ of the unit circle are closely related to $\mathcal T$. They are Kähler Frechet manifolds that can be realized as coadjoint orbits of the Virasoro group (and exhaust all coadjoint orbits of this group that have the Kähler structure).
@article{TRSPY_2006_253_a13,
     author = {A. G. Sergeev},
     title = {K\"ahler {Geometry} of the {Universal} {Teichm\"uller} {Space} and {Coadjoint} {Orbits} of the {Virasoro} {Group}},
     journal = {Informatics and Automation},
     pages = {175--203},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
JO  - Informatics and Automation
PY  - 2006
SP  - 175
EP  - 203
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/
LA  - ru
ID  - TRSPY_2006_253_a13
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
%J Informatics and Automation
%D 2006
%P 175-203
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/
%G ru
%F TRSPY_2006_253_a13
A. G. Sergeev. K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 175-203. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/