K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 175-203
Voir la notice de l'article provenant de la source Math-Net.Ru
The Kähler geometry of the universal Teichmüller space and related infinite-dimensional Kähler manifolds is studied. The universal Teichmüller space $\mathcal T$ may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The classical Teichmüller spaces $T(G)$, where $G$ is a Fuchsian group, are contained in $\mathcal T$ as complex Kähler submanifolds. The homogeneous spaces $\text {Diff}_+(S^1)/\text {M\"ob}(S^1)$ and $\text {Diff}_+(S^1)/S^1$ of the diffeomorphism group $\text {Diff}_+(S^1)$ of the unit circle are closely related to $\mathcal T$. They are Kähler Frechet manifolds that can be realized as coadjoint orbits of the Virasoro group (and exhaust all coadjoint orbits of this group that have the Kähler structure).
@article{TRSPY_2006_253_a13,
author = {A. G. Sergeev},
title = {K\"ahler {Geometry} of the {Universal} {Teichm\"uller} {Space} and {Coadjoint} {Orbits} of the {Virasoro} {Group}},
journal = {Informatics and Automation},
pages = {175--203},
publisher = {mathdoc},
volume = {253},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/}
}
TY - JOUR AU - A. G. Sergeev TI - K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group JO - Informatics and Automation PY - 2006 SP - 175 EP - 203 VL - 253 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/ LA - ru ID - TRSPY_2006_253_a13 ER -
A. G. Sergeev. K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group. Informatics and Automation, Complex analysis and applications, Tome 253 (2006), pp. 175-203. http://geodesic.mathdoc.fr/item/TRSPY_2006_253_a13/