A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 94-113

Voir la notice de l'article provenant de la source Math-Net.Ru

An increasing $\omega _1$-sequence of Borel equivalence relations on a Polish space that is cofinal (in the sense of Borel reducibility) in the family of all Borel equivalence relations is defined as a development of Rosendal's construction. It is proved that equivalence relations from this sequence are generated by explicitly defined Borel ideals.
@article{TRSPY_2006_252_a9,
     author = {V. G. Kanovei and V. A. Lyubetskii},
     title = {A~Cofinal {Family} of {Equivalence} {Relations} and {Borel} {Ideals} {Generating} {Them}},
     journal = {Informatics and Automation},
     pages = {94--113},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
TI  - A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them
JO  - Informatics and Automation
PY  - 2006
SP  - 94
EP  - 113
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/
LA  - ru
ID  - TRSPY_2006_252_a9
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%T A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them
%J Informatics and Automation
%D 2006
%P 94-113
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/
%G ru
%F TRSPY_2006_252_a9
V. G. Kanovei; V. A. Lyubetskii. A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 94-113. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/