A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 94-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

An increasing $\omega _1$-sequence of Borel equivalence relations on a Polish space that is cofinal (in the sense of Borel reducibility) in the family of all Borel equivalence relations is defined as a development of Rosendal's construction. It is proved that equivalence relations from this sequence are generated by explicitly defined Borel ideals.
@article{TRSPY_2006_252_a9,
     author = {V. G. Kanovei and V. A. Lyubetskii},
     title = {A~Cofinal {Family} of {Equivalence} {Relations} and {Borel} {Ideals} {Generating} {Them}},
     journal = {Informatics and Automation},
     pages = {94--113},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
TI  - A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them
JO  - Informatics and Automation
PY  - 2006
SP  - 94
EP  - 113
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/
LA  - ru
ID  - TRSPY_2006_252_a9
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%T A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them
%J Informatics and Automation
%D 2006
%P 94-113
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/
%G ru
%F TRSPY_2006_252_a9
V. G. Kanovei; V. A. Lyubetskii. A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 94-113. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/

[1] Adams S., Kechris A.S., “Linear algebraic groups and countable Borel equivalence relations”, J. Amer. Math. Soc., 13:4 (2000), 909–943 | DOI | MR | Zbl

[2] Farah I., “Basic problem for turbulent actions. II: $c_0$-equalities”, Proc. London Math. Soc., 82 (2001), 1–30 | DOI | MR | Zbl

[3] Friedman H., Stanley L., “A Borel reducibility theory for classes of countable structures”, J. Symb. Logic, 54:3 (1989), 894–914 | DOI | MR | Zbl

[4] Harrington L.A., Kechris A.S., Louveau A., “A Glimm–Effros dichotomy for Borel equivalence relations”, J. Amer. Math. Soc., 310 (1988), 293–302 | DOI | MR | Zbl

[5] Hjorth G., Classification and orbit equivalence relations, Math. Surv. and Monogr., 75, Amer. Math. Soc., Providence (RI), 2000 | MR | Zbl

[6] Hjorth G., Kechris A.S., Louveau A., “Borel equivalence relations induced by actions of the symmetric group”, Ann. Pure and Appl. Logic, 92 (1998), 63–112 | DOI | MR | Zbl

[7] Kanovei V.G., “Topologii, porozhdennye effektivno suslinskimi mnozhestvami, i ikh prilozheniya v deskriptivnoi teorii mnozhestv”, UMN, 51:3 (1996), 17–52 | MR | Zbl

[8] Kanovei V.G., Lyubetskii V.A., “O nekotorykh klassicheskikh problemakh deskriptivnoi teorii mnozhestv”, UMN, 58:5 (2003), 3–88 | MR | Zbl

[9] Kanovei V.G., Reeken M., “Nekotorye novye rezultaty o borelevskoi nesvodimosti otnoshenii ekvivalentnosti”, Izv. RAN. Ser. mat., 67:1 (2003), 59–82 | MR | Zbl

[10] Keldysh L.V., Struktura $B$-mnozhestv, Tr. MIAN, 17, Izd-vo AN SSSR, M., 1945, 74 pp. | MR | Zbl

[11] Kechris A.S., Classical descriptive set theory, Grad. Texts Math., 156, Springer, Berlin, 1995 | MR | Zbl

[12] Kechris A.S., “New directions in descriptive set theory”, Bull. Symb. Logic, 5:2 (1999), 161–174 | DOI | MR | Zbl

[13] Louveau A., Rosendal C., “Complete analytic equivalence relations”, Trans. Amer. Math. Soc., 357:12 (2005), 4839–4866 | DOI | MR | Zbl

[14] Louveau A., Velickovic B., “A note on Borel equivalence relations”, Proc. Amer. Math. Soc., 120 (1994), 255–259 | DOI | MR | Zbl

[15] Lusin N., “Sur les classes des constituantes des complementaires analytiques”, Ann. Scuola Norm. Super. Pisa. Ser. 2, 2:3 (1933), 269–282 | MR | Zbl

[16] Lusin N., Sierpiński W., “Sur quelques proprietes des ensembles (A)”, Bull. Intern. Acad. sci. Cracovie, 4 (1928), 35–48

[17] Rosendal C., “Cofinal families of Borel equivalence relations and quasiorders”, J. Symb. Logic, 70:4 (2005), 1325–1340 | DOI | MR | Zbl