A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 94-113
Voir la notice de l'article provenant de la source Math-Net.Ru
An increasing $\omega _1$-sequence of Borel equivalence relations on a Polish space that is cofinal (in the sense of Borel reducibility) in the family of all Borel equivalence relations is defined as a development of Rosendal's construction. It is proved that equivalence relations from this sequence are generated by explicitly defined Borel ideals.
@article{TRSPY_2006_252_a9,
author = {V. G. Kanovei and V. A. Lyubetskii},
title = {A~Cofinal {Family} of {Equivalence} {Relations} and {Borel} {Ideals} {Generating} {Them}},
journal = {Informatics and Automation},
pages = {94--113},
publisher = {mathdoc},
volume = {252},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/}
}
TY - JOUR AU - V. G. Kanovei AU - V. A. Lyubetskii TI - A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them JO - Informatics and Automation PY - 2006 SP - 94 EP - 113 VL - 252 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/ LA - ru ID - TRSPY_2006_252_a9 ER -
V. G. Kanovei; V. A. Lyubetskii. A~Cofinal Family of Equivalence Relations and Borel Ideals Generating Them. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 94-113. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a9/