Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2006_252_a8, author = {I. Ishii}, title = {Complexity of {3-Manifolds} and {Combed} {3-Manifolds}}, journal = {Informatics and Automation}, pages = {83--93}, publisher = {mathdoc}, volume = {252}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a8/} }
I. Ishii. Complexity of 3-Manifolds and Combed 3-Manifolds. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 83-93. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a8/
[1] Benedetti R., Petronio C., Branched standard spines of 3-manifolds, Lect. Notes Math., 1653, Springer, Berlin, 1997 | MR | Zbl
[2] Endoh M., Ishii I., “A new complexity for 3-manifolds”, Japan. J. Math., 31 (2005), 131–156 | MR | Zbl
[3] Endoh M., “On DS-diagrams for 3-manifolds of Heegaard genus 2”, Tokyo J. Math., 29:1 (2006), 117–146 | DOI | MR | Zbl
[4] Ikeda H., “Acyclic fake surfaces”, Topology, 10 (1971), 9–36 | DOI | MR | Zbl
[5] Ikeda H., “Acyclic fake surfaces which are spines of 3-manifolds”, Osaka J. Math., 9 (1972), 391–408 | MR | Zbl
[6] Ikeda H., “Identification maps on the 2-sphere”, Kobe J. Math., 2 (1985), 163–167 | MR | Zbl
[7] Ikeda H., Inoue Y., “Invitation to DS-diagrams”, Kobe J. Math., 2 (1985), 169–186 | MR | Zbl
[8] Ikeda H., “DS-diagrams with E-cycle”, Kobe J. Math., 3 (1986), 103–112 | MR | Zbl
[9] Ikeda H., Kouno M., “Like a flow-spine”, Kobe J. Math., 8 (1991), 93–100 | MR | Zbl
[10] Ishii I., “Flows and spines”, Tokyo J. Math., 9 (1986), 505–525 | DOI | MR | Zbl
[11] Ishii I., “Combinatorial construction of a non-singular flow on a 3-manifold”, Kobe J. Math., 3 (1986), 201–208 | MR | Zbl
[12] Ishii I., “Flow-spines and Seifert fibred structure of 3-manifolds”, Tokyo J. Math., 11 (1988), 95–104 | DOI | MR | Zbl
[13] Ishii I., “Moves for flow-spines and topological invariants of 3-manifolds”, Tokyo J. Math., 15 (1992), 297–312 | DOI | MR | Zbl
[14] Ishii I., “Fake braid group and 3-manifolds”, Geometry and its applications, eds. T. Nagano et al., World Sci., Singapore, 1993, 51–58 | MR | Zbl
[15] Koda Y., A new classification of genus two 3-manifolds — Parametrization and Reidemeister torsion, Master Thes., Keio Univ., 2004
[16] Taniguchi T., Tsuboi K., Yamashita M., “Systematic singular triangulation of all orientable Seifert manifolds”, Tokyo J. Math., 28 (2005), 539–561 | DOI | MR | Zbl