Complexity of 3-Manifolds and Combed 3-Manifolds
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 83-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new complexity, called a block number, is defined for a combed 3-manifold, and a method for the combinatorial classification of combed 3-manifolds with a given block number is proposed.
@article{TRSPY_2006_252_a8,
     author = {I. Ishii},
     title = {Complexity of {3-Manifolds} and {Combed} {3-Manifolds}},
     journal = {Informatics and Automation},
     pages = {83--93},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a8/}
}
TY  - JOUR
AU  - I. Ishii
TI  - Complexity of 3-Manifolds and Combed 3-Manifolds
JO  - Informatics and Automation
PY  - 2006
SP  - 83
EP  - 93
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a8/
LA  - en
ID  - TRSPY_2006_252_a8
ER  - 
%0 Journal Article
%A I. Ishii
%T Complexity of 3-Manifolds and Combed 3-Manifolds
%J Informatics and Automation
%D 2006
%P 83-93
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a8/
%G en
%F TRSPY_2006_252_a8
I. Ishii. Complexity of 3-Manifolds and Combed 3-Manifolds. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 83-93. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a8/

[1] Benedetti R., Petronio C., Branched standard spines of 3-manifolds, Lect. Notes Math., 1653, Springer, Berlin, 1997 | MR | Zbl

[2] Endoh M., Ishii I., “A new complexity for 3-manifolds”, Japan. J. Math., 31 (2005), 131–156 | MR | Zbl

[3] Endoh M., “On DS-diagrams for 3-manifolds of Heegaard genus 2”, Tokyo J. Math., 29:1 (2006), 117–146 | DOI | MR | Zbl

[4] Ikeda H., “Acyclic fake surfaces”, Topology, 10 (1971), 9–36 | DOI | MR | Zbl

[5] Ikeda H., “Acyclic fake surfaces which are spines of 3-manifolds”, Osaka J. Math., 9 (1972), 391–408 | MR | Zbl

[6] Ikeda H., “Identification maps on the 2-sphere”, Kobe J. Math., 2 (1985), 163–167 | MR | Zbl

[7] Ikeda H., Inoue Y., “Invitation to DS-diagrams”, Kobe J. Math., 2 (1985), 169–186 | MR | Zbl

[8] Ikeda H., “DS-diagrams with E-cycle”, Kobe J. Math., 3 (1986), 103–112 | MR | Zbl

[9] Ikeda H., Kouno M., “Like a flow-spine”, Kobe J. Math., 8 (1991), 93–100 | MR | Zbl

[10] Ishii I., “Flows and spines”, Tokyo J. Math., 9 (1986), 505–525 | DOI | MR | Zbl

[11] Ishii I., “Combinatorial construction of a non-singular flow on a 3-manifold”, Kobe J. Math., 3 (1986), 201–208 | MR | Zbl

[12] Ishii I., “Flow-spines and Seifert fibred structure of 3-manifolds”, Tokyo J. Math., 11 (1988), 95–104 | DOI | MR | Zbl

[13] Ishii I., “Moves for flow-spines and topological invariants of 3-manifolds”, Tokyo J. Math., 15 (1992), 297–312 | DOI | MR | Zbl

[14] Ishii I., “Fake braid group and 3-manifolds”, Geometry and its applications, eds. T. Nagano et al., World Sci., Singapore, 1993, 51–58 | MR | Zbl

[15] Koda Y., A new classification of genus two 3-manifolds — Parametrization and Reidemeister torsion, Master Thes., Keio Univ., 2004

[16] Taniguchi T., Tsuboi K., Yamashita M., “Systematic singular triangulation of all orientable Seifert manifolds”, Tokyo J. Math., 28 (2005), 539–561 | DOI | MR | Zbl