Integration over Spaces of Nonparametrized Arcs and Motivic Versions of the Monodromy Zeta Function
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 71-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Notions of integration of motivic type over the space of arcs factorized by the natural $\mathbb C^*$-action and over the space of nonparametrized arcs (branches) are developed. As an application, two motivic versions of the zeta function of the classical monodromy transformation of a germ of an analytic function on $\mathbb C^d$ are given that correspond to these notions. Another key ingredient in the construction of these motivic versions of the zeta function is the use of the so-called power structure over the Grothendieck ring of varieties introduced by the authors.
@article{TRSPY_2006_252_a7,
     author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez},
     title = {Integration over {Spaces} of {Nonparametrized} {Arcs} and {Motivic} {Versions} of the {Monodromy} {Zeta} {Function}},
     journal = {Informatics and Automation},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a7/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - I. Luengo
AU  - A. Melle-Hernández
TI  - Integration over Spaces of Nonparametrized Arcs and Motivic Versions of the Monodromy Zeta Function
JO  - Informatics and Automation
PY  - 2006
SP  - 71
EP  - 82
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a7/
LA  - ru
ID  - TRSPY_2006_252_a7
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A I. Luengo
%A A. Melle-Hernández
%T Integration over Spaces of Nonparametrized Arcs and Motivic Versions of the Monodromy Zeta Function
%J Informatics and Automation
%D 2006
%P 71-82
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a7/
%G ru
%F TRSPY_2006_252_a7
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. Integration over Spaces of Nonparametrized Arcs and Motivic Versions of the Monodromy Zeta Function. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 71-82. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a7/

[1] Gusein-Zade S.M., Delgado F., Kampilo A., “Integraly po otnosheniyu k eilerovoi kharakteristike po prostranstvam funktsii i mnogochlen Aleksandera”, Tr. MIAN, 238, 2002, 144–157 | Zbl

[2] A'Campo N., “La fonction zêta d'une monodromie”, Comment. Math. Helv., 50 (1975), 233–248 | DOI | MR

[3] Bittner F., “On motivic zeta functions and the motivic nearby fiber”, Math. Ztschr., 249:1 (2005), 63–83 | DOI | MR | Zbl

[4] Campillo A., Delgado F., Gusein-Zade S.M., “Poincaré series of a rational surface singularity”, Invent. math., 155:1 (2004), 41–53 | DOI | MR | Zbl

[5] Denef J., “Report on Igusa's local zeta function”, Sém. Bourbaki. Vol. 1990/91, Astérisque, 201–203, Soc. math. France, Exp. 730–744, Paris, 1991, 358–386 | MR

[6] Denef J., Loeser F., “Caractéristiques d'Euler–Poincaré, fonctions zêta locales et modifications analytiques”, J. Amer. Math. Soc., 5:4 (1992), 705–720 | DOI | MR | Zbl

[7] Denef J., Loeser F., “Motivic Igusa zeta functions”, J. Alg. Geom., 7:3 (1998), 505–537 | MR | Zbl

[8] Denef J., Loeser F., “Germs of arcs on singular algebraic varieties and motivic integration”, Invent. math., 135:1 (1999), 201–232 | DOI | MR | Zbl

[9] Denef J., Loeser F., “Geometry on arc spaces of algebraic varieties”, Eur. Congr. Math., vol. 1 (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 327–348 | MR | Zbl

[10] Denef J., Loeser F., “Lefschetz numbers of iterates of the monodromy and truncated arcs”, Topology, 41:5 (2002), 1031–1040 | DOI | MR | Zbl

[11] Guibert G., Loeser F., Merle M., Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, arXiv.org: math.AG/0312203 | MR

[12] Gusein-Zade S. M., Luengo I., Melle-Hernández A., “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett. 2004, 11:1, 49–57 | MR | Zbl

[13] Looijenga E., “Motivic measures”, Sém. Bourbaki. Vol. 1999/2000, Astérisque, 276, Soc. math. France, Exp. 865–879, Paris, 2002, 267–297 | MR | Zbl

[14] Veys W., Arc spaces, motivic integration and stringy invariants, arXiv.org: math.AG/0401374 | MR

[15] Viro O.Ya., “Some integral calculus based on Euler characteristic”, Topology and geometry, Rohlin Seminar, Lect. Notes Math., 1346, Springer, Berlin, 1988, 127–138 | MR