Bordism Classes Represented by Multiple Point Manifolds of Immersed Manifolds
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 55-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a geometrical version of Herbert's theorem determining the homology classes represented by the multiple point manifolds of a self-transverse immersion. Herbert's theorem and generalizations can readily be read off from this result. The simple geometrical proof is based on ideas in Herbert's paper. We also describe the relationship between this theorem and the homotopy theory of Thom spaces.
@article{TRSPY_2006_252_a5,
     author = {P. J. Eccles and M. Grant},
     title = {Bordism {Classes} {Represented} by {Multiple} {Point} {Manifolds} of {Immersed} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {55--60},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a5/}
}
TY  - JOUR
AU  - P. J. Eccles
AU  - M. Grant
TI  - Bordism Classes Represented by Multiple Point Manifolds of Immersed Manifolds
JO  - Informatics and Automation
PY  - 2006
SP  - 55
EP  - 60
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a5/
LA  - en
ID  - TRSPY_2006_252_a5
ER  - 
%0 Journal Article
%A P. J. Eccles
%A M. Grant
%T Bordism Classes Represented by Multiple Point Manifolds of Immersed Manifolds
%J Informatics and Automation
%D 2006
%P 55-60
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a5/
%G en
%F TRSPY_2006_252_a5
P. J. Eccles; M. Grant. Bordism Classes Represented by Multiple Point Manifolds of Immersed Manifolds. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 55-60. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a5/

[1] Asadi-Golmankhaneh M.A., Eccles P.J., “Determining the characteristic numbers of self-intersection manifolds”, J. London Math. Soc. Ser. 2, 62 (2000), 278–290 | DOI | MR | Zbl

[2] Barratt M.G., Eccles P.J., “$\Gamma^+$-structures–III: the stable structure of $\Omega^\infty\Sigma^\infty A$”, Topology, 13 (1974), 199–207 | DOI | MR | Zbl

[3] Herbert R.J., Multiple points of immersed manifolds, Mem. AMS, 250, Amer. Math. Soc., Providence (RI), 1981 | MR

[4] Koschorke U., Sanderson B., “Self-intersections and higher Hopf invariants”, Topology, 17 (1978), 283–290 | DOI | MR | Zbl

[5] Laures G., “On cobordism of manifolds with corners”, Trans. Amer. Math. Soc., 352 (2000), 5667–5688 | DOI | MR | Zbl

[6] Ronga F., “On multiple points of smooth immersions”, Comment. Math. Helv., 55 (1980), 521–527 | DOI | MR | Zbl

[7] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl

[8] Whitney H., “On the topology of differentiable manifolds”, Lectures on topology, Univ. Michigan Press, Ann Arbor, 1941, 101–141 | MR | Zbl