Configuration Spaces of Labeled Particles and Finite Eilenberg--MacLane Complexes
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 37-54

Voir la notice de l'article provenant de la source Math-Net.Ru

For any Coxeter system $(W,S)$, the group $W$ acts naturally on the complement of the associated complex hyperplane arrangement. By the well-known conjecture, the orbit space of this action is the classifying space of the corresponding Artin group. We describe some properties of configuration spaces of particles labeled by elements of a partial monoid and use them to prove that the orbit space mentioned in the conjecture is the classifying space of the positive Artin monoid. In particular, the conjecture reduces to a problem concerning the group completion of this monoid.
@article{TRSPY_2006_252_a4,
     author = {N. E. Dobrinskaya},
     title = {Configuration {Spaces} of {Labeled} {Particles} and {Finite} {Eilenberg--MacLane} {Complexes}},
     journal = {Informatics and Automation},
     pages = {37--54},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a4/}
}
TY  - JOUR
AU  - N. E. Dobrinskaya
TI  - Configuration Spaces of Labeled Particles and Finite Eilenberg--MacLane Complexes
JO  - Informatics and Automation
PY  - 2006
SP  - 37
EP  - 54
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a4/
LA  - ru
ID  - TRSPY_2006_252_a4
ER  - 
%0 Journal Article
%A N. E. Dobrinskaya
%T Configuration Spaces of Labeled Particles and Finite Eilenberg--MacLane Complexes
%J Informatics and Automation
%D 2006
%P 37-54
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a4/
%G ru
%F TRSPY_2006_252_a4
N. E. Dobrinskaya. Configuration Spaces of Labeled Particles and Finite Eilenberg--MacLane Complexes. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 37-54. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a4/