Configuration Spaces of Labeled Particles and Finite Eilenberg--MacLane Complexes
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 37-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any Coxeter system $(W,S)$, the group $W$ acts naturally on the complement of the associated complex hyperplane arrangement. By the well-known conjecture, the orbit space of this action is the classifying space of the corresponding Artin group. We describe some properties of configuration spaces of particles labeled by elements of a partial monoid and use them to prove that the orbit space mentioned in the conjecture is the classifying space of the positive Artin monoid. In particular, the conjecture reduces to a problem concerning the group completion of this monoid.
@article{TRSPY_2006_252_a4,
     author = {N. E. Dobrinskaya},
     title = {Configuration {Spaces} of {Labeled} {Particles} and {Finite} {Eilenberg--MacLane} {Complexes}},
     journal = {Informatics and Automation},
     pages = {37--54},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a4/}
}
TY  - JOUR
AU  - N. E. Dobrinskaya
TI  - Configuration Spaces of Labeled Particles and Finite Eilenberg--MacLane Complexes
JO  - Informatics and Automation
PY  - 2006
SP  - 37
EP  - 54
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a4/
LA  - ru
ID  - TRSPY_2006_252_a4
ER  - 
%0 Journal Article
%A N. E. Dobrinskaya
%T Configuration Spaces of Labeled Particles and Finite Eilenberg--MacLane Complexes
%J Informatics and Automation
%D 2006
%P 37-54
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a4/
%G ru
%F TRSPY_2006_252_a4
N. E. Dobrinskaya. Configuration Spaces of Labeled Particles and Finite Eilenberg--MacLane Complexes. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 37-54. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a4/

[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl

[2] Dobrinskaya N.E., Prostranstva orbit svobodnykh deistvii grupp na dopolneniyakh k konfiguratsiyam podprostranstv, Dis. ... kand. fiz.-mat. nauk, MGU, M., 2003

[3] Dobrinskaya N.E., “Gipoteza Arnolda–Toma–Fama i klassifitsiruyuschee prostranstvo polozhitelnogo monoida Artina”, UMN, 57:6 (2002), 181–182 | MR

[4] Barratt M., Priddy S., “On the homology of non-connected monoids and their associated groups”, Comment. Math. Helv., 47 (1972), 1–14 | DOI | MR | Zbl

[5] Brieskorn E., “Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe”, Invent. math., 12 (1971), 57–61 | DOI | MR | Zbl

[6] Brieskorn E., Saito K., “Artin-Gruppen und Coxeter-Gruppen”, Invent. math., 17 (1972), 245–271 | DOI | MR | Zbl

[7] Charney R., Davis M.W., “The $K(\pi,1)$-problem for hyperplane complements associated to infinite reflection groups”, J. Amer. Math. Soc., 8:3 (1995), 597–627 | DOI | MR | Zbl

[8] Charney R., Davis M.W., “Finite $K(\pi,1)$'s for Artin groups”, Prospects in topology, Ann. Math. Stud., 138, ed. F. Quinn, Princeton Univ. Press, Princeton, 1995, 110–124 | MR | Zbl

[9] Deligne P., “Les immeubles des groupes de tresses généralises”, Invent. math., 17 (1972), 273–302 | DOI | MR | Zbl

[10] Fox R., Neuwirth L., “The braid groups”, Math. scand., 10 (1962), 119–126 | MR | Zbl

[11] Garside F.A., “The braid group and other groups”, Quart. J. Math. Oxford, 20 (1969), 235–254 | DOI | MR | Zbl

[12] Guest M.A., Kozlowski A., Yamaguchi K., “Spaces of polynomials of bounded multiplicity”, Fund. math., 161 (1999), 93–117 | MR | Zbl

[13] Haefliger A., “Complexes of groups and orbihedra”, Group theory from a geometrical viewpoint, Proc. ICTP (Trieste, 1990), World Sci., Singapore, 1991, 504–540 | MR | Zbl

[14] James I.M., “Reduced product spaces”, Ann. Math. Ser. 2, 62:1 (1955), 170–197 | DOI | MR | Zbl

[15] Kallel S., “An analog of the May–Milgram model for configuration spaces with multiplicities”, Contemp. Math., 279 (2001), 135–149 | MR | Zbl

[16] Kallel S., “Interactions and collisions from the homotopy point of view”, Bull. Belg. Math. Soc. (to appear)

[17] May J.P., The geometry of iterated loop spaces, Lect. Notes Math., 271, Springer, Berlin, 1972 | MR | Zbl

[18] McDuff D., “Configuration spaces of positive and negative particles”, Topology, 14 (1975), 91–107 | DOI | MR | Zbl

[19] McDuff D., “On the classifying spaces of discrete monoids”, Topology, 18 (1979), 313–320 | DOI | MR | Zbl

[20] McDuff D., Segal G., “Homology fibrations and the ‘group-completion’ theorem”, Invent. math., 31 (1976), 279–284 | DOI | MR | Zbl

[21] Milgram R.J., “Iterated loop spaces”, Ann. Math. Ser. 2, 84 (1966), 386–403 | DOI | MR | Zbl

[22] Paris L., “Artin monoids inject in their groups”, Comment. Math. Helv., 77:3 (2002), 609–637 | DOI | MR | Zbl

[23] Salvatore P., “Configuration spaces with summable labels”, Cohomological methods in homotopy theory, Proc. Barcelona Conf. on Algebraic Topology (Bellaterra, 1998), Progr. Math., 196, Birkhäuser, Basel, 2001, 375–395 | MR | Zbl

[24] Segal G., “Configuration-spaces and iterated loop-spaces”, Invent. math., 21 (1973), 213–221 | DOI | MR | Zbl

[25] Shimakawa K., “Configuration spaces with partially summable labels and homology theories”, Math. J. Okayama Univ., 43 (2001), 43–72 | MR | Zbl

[26] Steenrod N.E., “Milgram's classifying space of a topological group”, Topology, 7 (1968), 349–368 | DOI | MR | Zbl

[27] Tits J., “Le problème des mots dans les groupes de Coxeter”, Symp. Math. INDAM (Rome, 1967/68), 1, Acad. Press, London, 1969, 175–185 | MR | Zbl