Morava $K$-Theory Ring for a~Quasi-dihedral Group in Chern Classes
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 31-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Morava $K$-theory ring for a quasi-dihedral group is calculated in terms of Chern characteristic classes and the Honda formal group law.
@article{TRSPY_2006_252_a3,
     author = {M. Bakuradze},
     title = {Morava $K${-Theory} {Ring} for {a~Quasi-dihedral} {Group} in {Chern} {Classes}},
     journal = {Informatics and Automation},
     pages = {31--36},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a3/}
}
TY  - JOUR
AU  - M. Bakuradze
TI  - Morava $K$-Theory Ring for a~Quasi-dihedral Group in Chern Classes
JO  - Informatics and Automation
PY  - 2006
SP  - 31
EP  - 36
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a3/
LA  - en
ID  - TRSPY_2006_252_a3
ER  - 
%0 Journal Article
%A M. Bakuradze
%T Morava $K$-Theory Ring for a~Quasi-dihedral Group in Chern Classes
%J Informatics and Automation
%D 2006
%P 31-36
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a3/
%G en
%F TRSPY_2006_252_a3
M. Bakuradze. Morava $K$-Theory Ring for a~Quasi-dihedral Group in Chern Classes. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 31-36. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a3/