Positivity of Curvature and Convexity of Faces
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 277-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional polyhedra homeomorphic to closed two-dimensional surfaces are considered in the three-dimensional Euclidean space. While studying the structure of an arbitrary face of a polyhedron, an interesting particular case is revealed when the magnitude of only one plane angle determines the sign of the curvature of the polyhedron at the vertex of this angle. Due to this observation, the following main theorem of the paper is obtained: If a two-dimensional polyhedron in the three-dimensional Euclidean space is isometric to the surface of a closed convex three-dimensional polyhedron, then all faces of the polyhedron are convex polygons.
@article{TRSPY_2006_252_a21,
     author = {M. I. Shtogrin},
     title = {Positivity of {Curvature} and {Convexity} of {Faces}},
     journal = {Informatics and Automation},
     pages = {277--284},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a21/}
}
TY  - JOUR
AU  - M. I. Shtogrin
TI  - Positivity of Curvature and Convexity of Faces
JO  - Informatics and Automation
PY  - 2006
SP  - 277
EP  - 284
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a21/
LA  - ru
ID  - TRSPY_2006_252_a21
ER  - 
%0 Journal Article
%A M. I. Shtogrin
%T Positivity of Curvature and Convexity of Faces
%J Informatics and Automation
%D 2006
%P 277-284
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a21/
%G ru
%F TRSPY_2006_252_a21
M. I. Shtogrin. Positivity of Curvature and Convexity of Faces. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 277-284. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a21/

[1] Rurk K., Sanderson B., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR

[2] Aleksandrov A.D., Vypuklye mnogogranniki, Gostekhizdat, M.; L., 1950 | MR

[3] Shtogrin M.I., “Polozhitelnost krivizny i vypuklost granei”, Mezhdunar. konf., posv. stoletiyu L. V. Keldysh, Tez. dokl.: Diskretnaya geometriya (Moskva, 2004), Mat. in-t im. V. A. Steklova, M., 2004, 39–40

[4] Olovyanishnikov S.P., “Obobschenie teoremy Koshi o vypuklykh mnogogrannikakh”, Mat. sb., 18(60):3 (1946), 441–446 | MR | Zbl

[5] Cauchy A., “Sur les polygones et polyedres. Second Memoire”, J. Ecole Polytech., 9 (1813), 87–98

[6] Glyuk G., “Pochti vse odnosvyaznye zamknutye poverkhnosti neizgibaemy”, Issledovaniya po metricheskoi teorii poverkhnostei: Sb. st., Matematika: Novoe v zarubezh. nauke, 18, Mir, M., 1980, 148–163 | MR

[7] Seifert H., Threlfall W., Lehrbuch der Topologie, Teubner, Leipzig; Berlin, 1934 ; Zeifert G., Trelfall V., Topologiya, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | Zbl

[8] Shtogrin M.I., “O stroenii granei trekhmernykh mnogogrannikov”, Izv. RAN. Ser. mat., 69:4 (2005), 205–224 | MR