Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 261-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

Homotopy invariants of free cochain complexes are studied. These invariants are applied to the calculation of exact values of the Morse numbers for smooth manifolds of large dimension.
@article{TRSPY_2006_252_a20,
     author = {V. V. Sharko},
     title = {Numerical {Invariants} of {Cochain} {Complexes} and the {Morse} {Numbers} of {Manifolds}},
     journal = {Informatics and Automation},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a20/}
}
TY  - JOUR
AU  - V. V. Sharko
TI  - Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds
JO  - Informatics and Automation
PY  - 2006
SP  - 261
EP  - 276
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a20/
LA  - ru
ID  - TRSPY_2006_252_a20
ER  - 
%0 Journal Article
%A V. V. Sharko
%T Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds
%J Informatics and Automation
%D 2006
%P 261-276
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a20/
%G ru
%F TRSPY_2006_252_a20
V. V. Sharko. Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 261-276. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a20/

[1] Andrica D., Functions with a minimal number of critical points, Preprint 95-8, “Babes-Bolyai” Univ., Cluj-Napoca (Romania), 1995 | Zbl

[2] Bogoyavlenskii O.I., “O tochnoi funktsii na mnogoobraziyakh”, Mat. zametki, 8:1 (1970), 77–83 | Zbl

[3] Cockcroft W.H., Swan R.G., “On the homotopy type of certain two-dimensional complexes”, Proc. London Math. Soc., 11 (1961), 193–202 | DOI | MR | Zbl

[4] Damian A., “On the stable Morse number of a closed manifold”, Bull. London Math. Soc., 34 (2002), 420–430 | DOI | MR | Zbl

[5] Forman R., “Witten–Morse theory for cell complexes”, Topology, 37 (1998), 945–979 | DOI | MR | Zbl

[6] Eliashberg Y., Gromov M., “Lagrangian intersections and the stable Morse theory”, Boll. Uni. mat. Ital. B, 11:2 (1997), 289–326 | MR | Zbl

[7] Farber M., “Homological algebra of Novikov–Shubin invariants and Morse inequalities”, Geom. and Funct. Anal., 6 (1996), 628–665 | DOI | MR | Zbl

[8] Gromov M., Shubin M., “Near-cohomology of Hilbert complexes and topology of non-simply connected manifolds”, Astérisque, 210 (1992), 283–294 | MR | Zbl

[9] Hajduk B., “Comparing handle decompositions of homotopy equivalent manifolds”, Fund. math., 95 (1977), 35–47 | MR | Zbl

[10] Kirby R.C., Siebenmann L.C., Foundational essays on topological manifolds, smoothings and triangulations, Ann. Math. Stud., 88, Princeton Univ. Press, Princeton (NJ), 1977 | MR | Zbl

[11] Lück W., $L^2$-invariants: Theory and applications to geometry and $K$-theory, Springer, Berlin, 2002 | MR

[12] Mathai V., Shubin M., “Twisted $L^2$-invariants of non-simply connected manifolds and asymptotic $L^2$ Morse inequalities”, Russ. J. Math. Phys., 4 (1996), 499–526 | MR | Zbl

[13] Novikov S.P., Shubin M.A., “Neravenstva Morsa i algebry fon Neimana”, UMN, 41:4 (1986), 163–164

[14] Novikov S.P., Shubin M.A., “Neravenstva Morsa i neimanovskie $\mathrm{II}_1$-faktory”, DAN SSSR, 289:2 (1986), 289–292 | MR | Zbl

[15] Novikov S.P., Shubin M.A., “Teoriya Morsa i neimanovskie invarianty neodnosvyaznykh mnogoobrazii”, UMN, 41:5 (1986), 222–223

[16] Pajitniov A., “On the asymptotics of Morse numbers of finite covers of manifolds”, Topology, 38 (1999), 529–541 | DOI | MR

[17] Sharko V., “$L^2$-invariants of manifolds and cell complexes”, Topology and Geometry, Proc. Ukr. Math. Congr., 2001, Inst. Math. NAS Ukr., Kyiv, 2003, 103–135 | MR | Zbl

[18] Sharko V.V., Functions on manifolds: Algebraic and topological aspects, Transl. Math. Monogr., 131, Amer. Math. Soc., Providence (RI), 1993 | MR | Zbl

[19] Stallings J., “A finitely presented group whose 3-dimensional integral homology is not finitely generated”, Amer. J. Math., 85 (1963), 541–543 | DOI | MR | Zbl

[20] Witten E., “Supersymmetry and Morse theory”, J. Diff. Geom., 17 (1982), 661–692 | MR | Zbl