Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 261-276

Voir la notice de l'article provenant de la source Math-Net.Ru

Homotopy invariants of free cochain complexes are studied. These invariants are applied to the calculation of exact values of the Morse numbers for smooth manifolds of large dimension.
@article{TRSPY_2006_252_a20,
     author = {V. V. Sharko},
     title = {Numerical {Invariants} of {Cochain} {Complexes} and the {Morse} {Numbers} of {Manifolds}},
     journal = {Informatics and Automation},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a20/}
}
TY  - JOUR
AU  - V. V. Sharko
TI  - Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds
JO  - Informatics and Automation
PY  - 2006
SP  - 261
EP  - 276
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a20/
LA  - ru
ID  - TRSPY_2006_252_a20
ER  - 
%0 Journal Article
%A V. V. Sharko
%T Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds
%J Informatics and Automation
%D 2006
%P 261-276
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a20/
%G ru
%F TRSPY_2006_252_a20
V. V. Sharko. Numerical Invariants of Cochain Complexes and the Morse Numbers of Manifolds. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 261-276. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a20/