Quasiconformally Instable Disc Bundles with Complex Structures
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 18-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss deformations and the quasiconformal instability of the Kähler geometry of disc bundles that are locally modeled on symmetric rank-one manifolds. The Kähler geometry of these manifolds is associated with natural complex or hypercomplex structures of pinched negative sectional curvature and infinite volume. Their fundamental groups are isomorphic to discrete subgroups of $\mathrm {PU}(n,1)$, $\mathrm {PSp}(n,1)$, or $\mathrm F_4^{-20}$.
@article{TRSPY_2006_252_a2,
     author = {B. N. Apanasov},
     title = {Quasiconformally {Instable} {Disc} {Bundles} with {Complex} {Structures}},
     journal = {Informatics and Automation},
     pages = {18--30},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a2/}
}
TY  - JOUR
AU  - B. N. Apanasov
TI  - Quasiconformally Instable Disc Bundles with Complex Structures
JO  - Informatics and Automation
PY  - 2006
SP  - 18
EP  - 30
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a2/
LA  - ru
ID  - TRSPY_2006_252_a2
ER  - 
%0 Journal Article
%A B. N. Apanasov
%T Quasiconformally Instable Disc Bundles with Complex Structures
%J Informatics and Automation
%D 2006
%P 18-30
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a2/
%G ru
%F TRSPY_2006_252_a2
B. N. Apanasov. Quasiconformally Instable Disc Bundles with Complex Structures. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 18-30. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a2/