Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2006_252_a19, author = {A. V. Ostrovsky}, title = {Maps of {Borel} {Sets}}, journal = {Informatics and Automation}, pages = {237--260}, publisher = {mathdoc}, volume = {252}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a19/} }
A. V. Ostrovsky. Maps of Borel Sets. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 237-260. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a19/
[1] Aleksandrov P.S., Uryson P.S., “O nulmernykh mnozhestvakh”, Aleksandrov P.S., Teoriya funktsii deistvitelnogo peremennogo i teoriya topologicheskikh prostranstv, Nauka, M., 1978, 147–166 | MR
[2] Chernavskii A.V., “O rabotakh L.V. Keldysh i ee seminara”, UMN, 60:4 (2005), 11–36 | MR | Zbl
[3] Debs G., Saint Raymond J., “Compact covering and game determinacy”, Topol. and Appl., 68 (1996), 153–185 | DOI | MR | Zbl
[4] Debs G., Saint Raymond J., “Arbres distingués, bi-arbres et théorèmes de relèvement”, C. r. Acad. sci. Paris. Sér. 1, 336 (2003), 625–628 | MR | Zbl
[5] Engelen A.J.M., Homogeneous zero-dimensional absolute Borel sets, CWI Tracts, 27, Centr. Wisk. en Inform., Amsterdam, 1986 | MR | Zbl
[6] Engelking R., Holsztynski W., Sikorski R., “Some examples of Borel sets”, Colloq. Math., 15 (1966), 271–274 | MR | Zbl
[7] Holický P., Spurný J., “Perfect images of absolute Souslin and absolute Borel Tychonoff spaces”, Topol. and Appl., 131 (2003), 281–294 | DOI | MR | Zbl
[8] Hurewicz W., “Relativ perfekte Teile von Punktmengen und Mengen (A)”, Fund. math., 12 (1928), 78–109 | Zbl
[9] Just W., Wicke H., “Some conditions under which tri-quotient or compact-covering maps are inductively perfect”, Topol. and Appl., 55 (1994), 289–305 | DOI | MR | Zbl
[10] Lusin N., Leçons sur les ensembles analytiques et leurs applications, Gauthier-Villars, Paris, 1930 | Zbl
[11] Keldysh L.V., Struktura $V$-mnozhestv, Tr. MIAN, 17, Izd-vo AN SSSR, L.–M., 1945, 74 pp. | MR | Zbl
[12] Keldysh L.V., “Struktura V-mnozhestv”, DAN SSSR, 31:7 (1941), 651–653 | Zbl
[13] Keldysh L.V., “Ob otkrytykh otobrazheniyakh A-mnozhestv”, DAN SSSR, 49:9 (1945), 646–648
[14] Kuratovskii K., Topologiya, t. 1, Mir, M., 1966 | MR
[15] Louveau A., Saint Raymond J., “Borel classes and closed games: Wadge-type and Hurewicz-type results”, Trans. Amer. Math. Soc., 304:2 (1987), 431–467 | DOI | MR | Zbl
[16] Martin D., “Borel determinancy”, Ann. Math., 102 (1975), 363–371 | DOI | MR | Zbl
[17] Mycielski J., “On the axiom of determinateness”, Fund. math., 53 (1964), 205–224 | MR | Zbl
[18] Ostrovskii A.V., “Proizvedenie $F_{\mathrm{II}}$-prostranstv i $A$-mnozhestv”, Vestn. MGU. Matematika. Mekhanika, 1975, no. 2, 29–34 | MR | Zbl
[19] Ostrovskii A.V., “O neseparabelnykh $\tau$-A-mnozhestvakh i ikh otobrazheniyakh”, DAN SSSR, 226:2 (1976), 269–272 | MR | Zbl
[20] Ostrovskii A.V., “Nepreryvnye obrazy proizvedeniya $\mathbf C\times\mathbf Q$ kantorova sovershennogo mnozhestva $\mathbf C$ i ratsionalnykh chisel $\mathbf Q$”, Seminar po obschei topologii, Izd-vo MGU, M., 1981, 78–84 | MR
[21] Ostrovskii A.V., “K voprosu o strukture borelevskikh mnozhestv”, Topologiya i teoriya mnozhestv, Izd. Udm. gos. un-ta, Izhevsk, 1982, 75–84 | MR
[22] Ostrovsky A.V., “Triquotient and inductively perfect maps”, Topol. and Appl., 23 (1986), 25–28 | DOI | MR
[23] Ostrovskii A.V., “K voprosu Keldysh o strukture borelevskikh mnozhestv”, Mat. sb., 131:3 (1986), 323–346 | MR
[24] Ostrovskii A.V., “Teorema Uedzha reshaet problemy Luzina i Gurevicha”, Kardinalnye invarianty i rasshireniya topologicheskikh prostranstv, Izd. Udm. gos. un-ta, Izhevsk, 1989, 91–94 | MR
[25] Ostrovskii A.V., “O novykh klassakh otobrazhenii, svyazannykh s $k$-nakryvayuschimi otobrazheniyami”, Vestn. MGU. Matematika. Mekhanika, 1994, no. 4, 24–28 | MR
[26] Ostrovsky A.V., “On open maps of Borel sets”, Fund. math., 146 (1995), 203–213 | MR | Zbl
[27] Ostrovsky A.V., “$s$-Covering maps with complete fibers”, Topol. and Appl., 102 (2000), 1–11 | DOI | MR | Zbl
[28] Ostrovsky A.V., “Stable maps of Polish spaces”, Proc. Amer. Math. Soc., 128:10 (2000), 3081–3089 | DOI | MR | Zbl
[29] Pillot M., “Tri-quotient maps become inductively perfect with the aid of consonance and continuous selections”, Topol. and Appl., 104 (2000), 237–253 | DOI | MR | Zbl
[30] Saint Raymond J., “La structure borelienne d'Effros est-elle standard?”, Fund. math., 100 (1978), 201–210 | MR | Zbl
[31] Steel J., “Analytic sets and Borel isomorphisms”, Fund. math., 108 (1980), 83–88 | MR | Zbl
[32] Taimanov A.D., “Ob otkrytykh obrazakh borelevskikh mnozhestv”, Mat. sb., 37 (1955), 293–300 | MR | Zbl
[33] Choban M.M., “Nepreryvnye obrazy polnykh prostranstv”, Tr. Mosk. mat. o-va, 30 (1974), 23–59 | MR | Zbl
[34] Choban M.M., “O nekotorykh voprosakh deskriptivnoi teorii mnozhestv v topologicheskikh prostranstvakh”, UMN, 60:4 (2005), 123–144 | MR | Zbl
[35] Van Wesep R., “Wadge degrees and descriptive set theory”, Cabal Seminar 76–77, Lect. Notes Math., 689, Springer, Berlin, 1978, 151–170 | MR