Maps of Borel Sets
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 237-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions concerning the structure of Borel sets were raised in special cases by Luzin, Aleksandrov, and Uryson as the problems of distinguishing the sets with certain homogeneous properties in Borel classes and determining the number of such pairwise nonhomeomorphic sets. The universal homogeneity, i.e., the property to contain an everywhere closed copy of any Borel set of the same or smaller class, was considered by L. V. Keldysh. She called the sets of classes $\Pi _{\alpha }^0$, $\alpha > 2$, of first category in themselves that possess this homogeneity property canonical and proved their uniqueness. Thus she revealed the central role of the universality property when describing homeomorphic Borel sets. These investigations led her to the problem of universality of Borel sets and to the problem of finding conditions under which there exists an open map between Borel sets. In this paper, such conditions are presented and similar questions are considered for closed, compact-covering, harmonious, and other stable maps.
@article{TRSPY_2006_252_a19,
     author = {A. V. Ostrovsky},
     title = {Maps of {Borel} {Sets}},
     journal = {Informatics and Automation},
     pages = {237--260},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a19/}
}
TY  - JOUR
AU  - A. V. Ostrovsky
TI  - Maps of Borel Sets
JO  - Informatics and Automation
PY  - 2006
SP  - 237
EP  - 260
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a19/
LA  - ru
ID  - TRSPY_2006_252_a19
ER  - 
%0 Journal Article
%A A. V. Ostrovsky
%T Maps of Borel Sets
%J Informatics and Automation
%D 2006
%P 237-260
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a19/
%G ru
%F TRSPY_2006_252_a19
A. V. Ostrovsky. Maps of Borel Sets. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 237-260. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a19/

[1] Aleksandrov P.S., Uryson P.S., “O nulmernykh mnozhestvakh”, Aleksandrov P.S., Teoriya funktsii deistvitelnogo peremennogo i teoriya topologicheskikh prostranstv, Nauka, M., 1978, 147–166 | MR

[2] Chernavskii A.V., “O rabotakh L.V. Keldysh i ee seminara”, UMN, 60:4 (2005), 11–36 | MR | Zbl

[3] Debs G., Saint Raymond J., “Compact covering and game determinacy”, Topol. and Appl., 68 (1996), 153–185 | DOI | MR | Zbl

[4] Debs G., Saint Raymond J., “Arbres distingués, bi-arbres et théorèmes de relèvement”, C. r. Acad. sci. Paris. Sér. 1, 336 (2003), 625–628 | MR | Zbl

[5] Engelen A.J.M., Homogeneous zero-dimensional absolute Borel sets, CWI Tracts, 27, Centr. Wisk. en Inform., Amsterdam, 1986 | MR | Zbl

[6] Engelking R., Holsztynski W., Sikorski R., “Some examples of Borel sets”, Colloq. Math., 15 (1966), 271–274 | MR | Zbl

[7] Holický P., Spurný J., “Perfect images of absolute Souslin and absolute Borel Tychonoff spaces”, Topol. and Appl., 131 (2003), 281–294 | DOI | MR | Zbl

[8] Hurewicz W., “Relativ perfekte Teile von Punktmengen und Mengen (A)”, Fund. math., 12 (1928), 78–109 | Zbl

[9] Just W., Wicke H., “Some conditions under which tri-quotient or compact-covering maps are inductively perfect”, Topol. and Appl., 55 (1994), 289–305 | DOI | MR | Zbl

[10] Lusin N., Leçons sur les ensembles analytiques et leurs applications, Gauthier-Villars, Paris, 1930 | Zbl

[11] Keldysh L.V., Struktura $V$-mnozhestv, Tr. MIAN, 17, Izd-vo AN SSSR, L.–M., 1945, 74 pp. | MR | Zbl

[12] Keldysh L.V., “Struktura V-mnozhestv”, DAN SSSR, 31:7 (1941), 651–653 | Zbl

[13] Keldysh L.V., “Ob otkrytykh otobrazheniyakh A-mnozhestv”, DAN SSSR, 49:9 (1945), 646–648

[14] Kuratovskii K., Topologiya, t. 1, Mir, M., 1966 | MR

[15] Louveau A., Saint Raymond J., “Borel classes and closed games: Wadge-type and Hurewicz-type results”, Trans. Amer. Math. Soc., 304:2 (1987), 431–467 | DOI | MR | Zbl

[16] Martin D., “Borel determinancy”, Ann. Math., 102 (1975), 363–371 | DOI | MR | Zbl

[17] Mycielski J., “On the axiom of determinateness”, Fund. math., 53 (1964), 205–224 | MR | Zbl

[18] Ostrovskii A.V., “Proizvedenie $F_{\mathrm{II}}$-prostranstv i $A$-mnozhestv”, Vestn. MGU. Matematika. Mekhanika, 1975, no. 2, 29–34 | MR | Zbl

[19] Ostrovskii A.V., “O neseparabelnykh $\tau$-A-mnozhestvakh i ikh otobrazheniyakh”, DAN SSSR, 226:2 (1976), 269–272 | MR | Zbl

[20] Ostrovskii A.V., “Nepreryvnye obrazy proizvedeniya $\mathbf C\times\mathbf Q$ kantorova sovershennogo mnozhestva $\mathbf C$ i ratsionalnykh chisel $\mathbf Q$”, Seminar po obschei topologii, Izd-vo MGU, M., 1981, 78–84 | MR

[21] Ostrovskii A.V., “K voprosu o strukture borelevskikh mnozhestv”, Topologiya i teoriya mnozhestv, Izd. Udm. gos. un-ta, Izhevsk, 1982, 75–84 | MR

[22] Ostrovsky A.V., “Triquotient and inductively perfect maps”, Topol. and Appl., 23 (1986), 25–28 | DOI | MR

[23] Ostrovskii A.V., “K voprosu Keldysh o strukture borelevskikh mnozhestv”, Mat. sb., 131:3 (1986), 323–346 | MR

[24] Ostrovskii A.V., “Teorema Uedzha reshaet problemy Luzina i Gurevicha”, Kardinalnye invarianty i rasshireniya topologicheskikh prostranstv, Izd. Udm. gos. un-ta, Izhevsk, 1989, 91–94 | MR

[25] Ostrovskii A.V., “O novykh klassakh otobrazhenii, svyazannykh s $k$-nakryvayuschimi otobrazheniyami”, Vestn. MGU. Matematika. Mekhanika, 1994, no. 4, 24–28 | MR

[26] Ostrovsky A.V., “On open maps of Borel sets”, Fund. math., 146 (1995), 203–213 | MR | Zbl

[27] Ostrovsky A.V., “$s$-Covering maps with complete fibers”, Topol. and Appl., 102 (2000), 1–11 | DOI | MR | Zbl

[28] Ostrovsky A.V., “Stable maps of Polish spaces”, Proc. Amer. Math. Soc., 128:10 (2000), 3081–3089 | DOI | MR | Zbl

[29] Pillot M., “Tri-quotient maps become inductively perfect with the aid of consonance and continuous selections”, Topol. and Appl., 104 (2000), 237–253 | DOI | MR | Zbl

[30] Saint Raymond J., “La structure borelienne d'Effros est-elle standard?”, Fund. math., 100 (1978), 201–210 | MR | Zbl

[31] Steel J., “Analytic sets and Borel isomorphisms”, Fund. math., 108 (1980), 83–88 | MR | Zbl

[32] Taimanov A.D., “Ob otkrytykh obrazakh borelevskikh mnozhestv”, Mat. sb., 37 (1955), 293–300 | MR | Zbl

[33] Choban M.M., “Nepreryvnye obrazy polnykh prostranstv”, Tr. Mosk. mat. o-va, 30 (1974), 23–59 | MR | Zbl

[34] Choban M.M., “O nekotorykh voprosakh deskriptivnoi teorii mnozhestv v topologicheskikh prostranstvakh”, UMN, 60:4 (2005), 123–144 | MR | Zbl

[35] Van Wesep R., “Wadge degrees and descriptive set theory”, Cabal Seminar 76–77, Lect. Notes Math., 689, Springer, Berlin, 1978, 151–170 | MR