Multipolytopes and Convex Chains
Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 224-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a simple complete multipolytope $\mathcal P$ in $\mathbb R^n$, Hattori and Masuda defined a locally constant function $\mathrm {DH}_{\mathcal P}$ on $\mathbb R^n$ minus the union of hyperplanes associated with $\mathcal P$, which agrees with the density function of an equivariant complex line bundle over a Duistermaat–Heckman measure when $\mathcal P$ arises from a moment map of a torus manifold. We improve the definition of $\mathrm {DH}_{\mathcal P}$ and construct a convex chain $\overline {\mathrm {DH}}_{\mathcal P}$ on $\mathbb R^n$. The well-definiteness of this convex chain is equivalent to the semicompleteness of the multipolytope $\mathcal P$. Generalizations of the Pukhlikov–Khovanskii formula and an Ehrhart polynomial for a simple lattice multipolytope are given as corollaries. The constructed correspondence $\{$simple semicomplete multipolytopes$\}\to \{$convex chains$\}$ is surjective but not injective. We will study its “kernel.”
@article{TRSPY_2006_252_a18,
     author = {Y. Nishimura},
     title = {Multipolytopes and {Convex} {Chains}},
     journal = {Informatics and Automation},
     pages = {224--236},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a18/}
}
TY  - JOUR
AU  - Y. Nishimura
TI  - Multipolytopes and Convex Chains
JO  - Informatics and Automation
PY  - 2006
SP  - 224
EP  - 236
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a18/
LA  - en
ID  - TRSPY_2006_252_a18
ER  - 
%0 Journal Article
%A Y. Nishimura
%T Multipolytopes and Convex Chains
%J Informatics and Automation
%D 2006
%P 224-236
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a18/
%G en
%F TRSPY_2006_252_a18
Y. Nishimura. Multipolytopes and Convex Chains. Informatics and Automation, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 224-236. http://geodesic.mathdoc.fr/item/TRSPY_2006_252_a18/

[1] Brion M., Vergne M., “Lattice points in simple polytopes”, J. Amer. Math. Soc., 10 (1997), 371–392 | DOI | MR | Zbl

[2] Davis M., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 61 (1991), 417–451 | DOI | MR

[3] Guillemin V., Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Birkhäuser, Boston, 1994 | MR

[4] Hattori A., Masuda M., “Theory of multi-fans”, Osaka J. Math., 40 (2003), 1–68 | MR | Zbl

[5] Masuda M., “Unitary toric manifolds, multi-fans and equivariant index”, Tohoku Math. J., 51 (1999), 237–265 | DOI | MR | Zbl

[6] Pukhlikov A.V., Khovanskii A.G., “Konechno additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185

[7] Pukhlikov A.V., Khovanskii A.G., “Teorema Rimana–Rokha dlya integralov i summ kvazipolinomov po virtualnym mnogogrannikam”, Algebra i analiz, 4:4 (1992), 188–216 | Zbl

[8] Ziegler G.M., Lectures on polytopes, Springer, New York, 1995 | MR